toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bodirsky, B.L.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Rolinski, S.; Weindl, I.; Schmitz, C.; Müller, C.; Bonsch, M.; Humpenöder, F.; Biewald, A.; Stevanovic, M. url  doi
openurl 
  Title Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution Type Journal Article
  Year 2014 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume (down) 5 Issue Pages 3858  
  Keywords Animals; Crops, Agricultural/metabolism/*supply & distribution; Environmental Pollution/*prevention & control; *Food Supply; Humans; Models, Theoretical; Nitrogen Fixation; *Population Growth; Reactive Nitrogen Species/*supply & distribution  
  Abstract Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4513  
Permanent link to this record
 

 
Author Coles, G.D.; Wratten, S.D.; Porter, J.R. doi  openurl
  Title Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production Type Journal Article
  Year 2016 Publication PeerJ Abbreviated Journal PeerJ  
  Volume (down) 4 Issue Pages 17  
  Keywords Agroecology; Forage utilisation; Food costs; Nutrition; Whole-year; production; New Zealand; Food access; Food security; humans  
  Abstract Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially available pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their town food needs. We hope that lour model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-8359 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4774  
Permanent link to this record
 

 
Author Porter, J.R.; Dyball, R.; Dumaresq, D.; Deutsch, L.; Matsuda, H. url  doi
openurl 
  Title Feeding capitals: Urban food security and self-provisioning in Canberra, Copenhagen and Tokyo Type Journal Article
  Year 2014 Publication Global Food Security Abbreviated Journal Global Food Security  
  Volume (down) 3 Issue 1 Pages 1-7  
  Keywords cities; food security; self-provisioning; provisioning ecosystems  
  Abstract Most people live in cities, but most food system studies and food security issues focus on the rural poor. Urban populations differ from rural populations in their food consumption by being generally wealthier, requiring food trade for their food security, defined as the extent to which people have adequate diets. Cities rarely have the self-provisioning capacity to satisfy their own food supply, understood as the extent to which the food consumed by the city’s population is produced from the city’s local agro-ecosystems. Almost inevitably, a city’s food security is augmented by production from remote landscapes, both internal and external in terms of a state’s jurisdiction. We reveal the internal and external food flows necessary for the food security of three wealthy capital cities (Canberra, Australia; Copenhagen, Denmark; Tokyo, Japan). These cities cover two orders of magnitude in population size and three orders of magnitude in population density. From traded volumes of food and their sources into the cities, we calculate the productivity of the city’s regional and non-regional ecosystems that provide food for these cities and estimate the overall utilised land area. The three cities exhibit differing degrees of food self provisioning capacity and exhibit large differences in the areas on which they depend to provide their food. We show that, since 1965, global land area effectively imported to produce food for these cities has increased with their expanding populations, with large reductions in the percentage of demand met by local agro-ecosystems. The physical trading of food commodities embodies ecosystem services, such as water, soil fertility and pollination that are required for land-based food production. This means that the trade in these embodied ecosystem services has become as important for food security as traditional economic mechanisms such as market access and trade. A future policy question, raised by our study, is the degree to which governments will remain committed to open food trade policies in the face of national political unrest caused by food shortages. Our study demonstrates the need to determine the food security and self-provisioning capacity of a wide range of rich and poor cities, taking into account the global location of the ecosystems that are provisioning them. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-9124 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4636  
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J. url  doi
openurl 
  Title Uncertainty in simulating wheat yields under climate change Type Journal Article
  Year 2013 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume (down) 3 Issue 9 Pages 827-832  
  Keywords crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts  
  Abstract Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4599  
Permanent link to this record
 

 
Author Graef, F.; Sieber, S.; Mutabazi, K.; Asch, F.; Biesalski, H.K.; Bitegeko, J.; Bokelmann, W.; Bruentrup, M.; Dietrich, O.; Elly, N.; Fasse, A.; Germer, J.U.; Grote, U.; Herrmann, L.; Herrmann, R.; Hoffmann, H.; Kahimba, F.C.; Kaufmann, B.; Kersebaum, K.-C.; Kilembe, C.; Kimaro, A.; Kinabo, J.; König, B.; König, H.; Lana, M.; Levy, C.; Lyimo-Macha, J.; Makoko, B.; Mazoko, G.; Mbaga, S.H.; Mbogoro, W.; Milling, H.; Mtambo, K.; Mueller, J.; Mueller, C.; Mueller, K.; Nkonja, E.; Reif, C.; Ringler, C.; Ruvuga, S.; Schaefer, M.; Sikira, A.; Silayo, V.; Stahr, K.; Swai, E.; Tumbo, S.; Uckert, G. url  doi
openurl 
  Title Framework for participatory food security research in rural food value chains Type Journal Article
  Year 2014 Publication Global Food Security Abbreviated Journal Global Food Security  
  Volume (down) 3 Issue 1 Pages 8-15  
  Keywords food security; food value chain; action research; tanzania; research framework  
  Abstract Enhancing food security for poor and vulnerable people requires adapting rural food systems to various driving factors. Food security-related research should apply participatory action research that considers the entire food value chain to ensure sustained success. This article presents a research framework that focusses on determining, prioritising, testing, adapting and disseminating food securing upgrading strategies across the multiple components of rural food value chains. These include natural resources, Food production, processing, markets, consumption and waste management. Scientists and policy makers jointly use tools developed for assessing potentials for enhancing regional food security at multiple spatial and temporal scales. The research is being conducted in Tanzania as a case study for Sub-Saharan countries and is done in close collaboration with local, regional and national stakeholders, encompassing all activities across all different food sectors. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-9124 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4523  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: