toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Elsgaard, L.; Børgesen, C.D.; Olesen, J.E.; Siebert, S.; Ewert, F.; Peltonen-Sainio, P.; Rötter, R.P.; Skjelvåg, A.O. doi  openurl
  Title Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe Type Journal Article
  Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A  
  Volume 29 Issue (up) 10 Pages 1514-1526  
  Keywords Agriculture/*economics/trends; Animals; Avena/chemistry/economics/*growth & development/microbiology; *Climate Change/economics; Crops, Agricultural/chemistry/economics/*growth & development/microbiology; Europe; *Food Safety; Forecasting/methods; Fungi/growth & development/metabolism; Humans; Models, Biological; Models, Economic; Mycotoxins/analysis/biosynthesis; Soil Pollutants/adverse effects/analysis; Spatio-Temporal Analysis; Triticum/chemistry/economics/*growth & development/microbiology; Uncertainty; Weather; Zea mays/chemistry/economics/*growth & development/microbiology  
  Abstract Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-0049 1944-0057 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4585  
Permanent link to this record
 

 
Author Milford, A.B.; Kildal, C. doi  openurl
  Title Meat Reduction by Force: The Case of “Meatless Monday” in the Norwegian Armed Forces Type Journal Article
  Year 2019 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 11 Issue (up) 10 Pages 2741  
  Keywords sustainable diets; meat reduction; Meatless Monday; policy implementation; attitudes to vegetarian food; multivariate regression analysis; Climate-Change; Food Choices; Consumption; Attitudes; Consumers; Health; Diet; Willingness; Information; Barriers  
  Abstract Despite the scientific evidence that more plants and less animal-based food is more sustainable, policy interventions to reduce meat consumption are scarce. However, campaigns for meat free days in school and office canteens have spread globally over the last years. In this paper, we look at the Norwegian Armed Forces’ attempt to introduce the Meatless Monday campaign in their camps, and we evaluate the implementation process as well as the effect of the campaign on soldiers. Qualitative interviews with military staff indicate that lack of conviction about benefits of meat reduction, and the fact that kitchen staff did not feel ownership to the project, partly explain why vegetarian measures were not fully implemented in all the camps. A multivariate regression analysis with survey data from soldiers indicate that those who have experienced meat free days in the military kitchen are more prone to claim that joining the military has given them a more positive view on vegetarian food. Furthermore, the survey gives evidence that stated willingness to eat more vegetarian food is higher among soldiers who believe in the environmental and health benefits of meat reduction.  
  Address 2019-06-27  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5221  
Permanent link to this record
 

 
Author Trnka, M.; Hlavinka, P.; Semenov, M.A. doi  openurl
  Title Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change Type Journal Article
  Year 2015 Publication Journal of the Royal Society Interface Abbreviated Journal J. R. Soc. Interface  
  Volume 12 Issue (up) 112 Pages 20150721  
  Keywords climate change; extreme events; food security; winter wheat  
  Abstract Ways of increasing the production of wheat, the most widely grown cereal crop, will need to be found to meet the increasing demand caused by human population growth in the coming decades. This increase must occur despite the decrease in yield gains now being reported in some regions, increased price volatility and the expected increase in the frequency of adverse weather events that can reduce yields. However, if and how the frequency of adverse weather events will change over Europe, the most important wheat-growing area, has not yet been analysed. Here, we show that the accumulated probability of 11 adverse weather events with the potential to significantly reduce yield will increase markedly across all of Europe. We found that by the end of the century, the exposure of the key European wheat-growing areas, where most wheat production is currently concentrated, may increase more than twofold. However, if we consider the entire arable land area of Europe, a greater than threefold increase in risk was predicted. Therefore, shifting wheat production to new producing regions to reduce the risk might not be possible as the risk of adverse events beyond the key wheat-growing areas increases even more. Furthermore, we found a marked increase in wheat exposure to high temperatures, severe droughts and field inaccessibility compared with other types of adverse events. Our results also showed the limitations of some of the presently debated adaptation options and demonstrated the need for development of region-specific strategies. Other regions of the world could be affected by adverse weather events in the future in a way different from that considered here for Europe. This observation emphasizes the importance of conducting similar analyses for other major wheat regions.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-5689 1742-5662 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4819  
Permanent link to this record
 

 
Author Daccache, A.; Ciurana, J.S.; Diaz, J.A.R.; Knox, J.W. url  doi
openurl 
  Title Water and energy footprint of irrigated agriculture in the Mediterranean region Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue (up) 12 Pages 124014  
  Keywords food security; CO2 emissions; nexus; water productivity; water resources; climate-change; southern spain; management; impacts; deficit; grids  
  Abstract Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m(3) kg(-1)) and energy (CO2 kg(-1)) productivity and identify vulnerable areas or `hotspots’. For a selected key crops in the region, irrigation accounts for 61 km(3) yr(-1) of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 tMm(-3) and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km(3) of water but would correspondingly increase CO2 emissions by around +135\%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km(3) yr(-1) (+137\%) whilst CO2 emissions would rise by +270\%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4747  
Permanent link to this record
 

 
Author McKersie, B. doi  openurl
  Title Planning for food security in a changing climate Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue (up) 12 Pages 3435-3450  
  Keywords Adaptation, Physiological; *Climate Change; Crops, Agricultural/growth & development; Droughts; *Food Supply; Zea mays/physiology; Climate change; DroughtGard; cropping systems; drought tolerance; genetic engineering; maize; marker-assisted selection; plant breeding  
  Abstract The Intergovernmental Panel on Climate Change and other international agencies have concluded that global crop production is at risk due to climate change, population growth, and changing food preferences. Society expects that the agricultural sciences will innovate solutions to these problems and provide food security for the foreseeable future. My thesis is that an integrated research plan merging agronomic and genetic approaches has the greatest probability of success. I present a template for a research plan based on the lessons we have learned from the Green Revolution and from the development of genetically engineered crops that may guide us to meet this expectation. The plan starts with a vision of how the crop management system could change, and I give a few examples of innovations that are very much in their infancy but have significant potential. The opportunities need to be conceptualized on a regional basis for each crop to provide a target for change. The plan gives an overview of how the tools of plant biotechnology can be used to create the genetic diversity needed to implement the envisioned changes in the crop management system, using the development of drought tolerance in maize (Zea mays L.) as an example that has led recently to the commercial release of new hybrids in the USA. The plan requires an interdisciplinary approach that integrates and coordinates research on plant biotechnology, genetics, physiology, breeding, agronomy, and cropping systems to be successful.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4568  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: