|
Calanca, P., & Semenov, M. A. (2013). Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database. Theor. Appl. Climatol., 113(3-4), 445–455.
Abstract: We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.
|
|
|
Dumont, B., Leemans, V., Ferrandis, S., Bodson, B., Destain, J. - P., & Destain, M. - F. (2014). Assessing the potential of an algorithm based on mean climatic data to predict wheat yield. Precision Agric., 15(3), 255–272.
Abstract: The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.
|
|
|
Ferrise, R., Toscano, P., Pasqui, M., Moriondo, M., Primicerio, J., Semenov, M. A., et al. (2015). Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin. Clim. Res., 65, 7–21.
Abstract: Uncertainty in weather conditions for the forthcoming growing season influences farmers’ decisions, based on their experience of the past climate, regarding the reduction of agricultural risk. Early within-season predictions of grain yield can represent a great opportunity for farmers to improve their management decisions and potentially increase yield and reduce potential risk. This study assessed 3 methods of within-season predictions of durum wheat yield at 10 sites across the Mediterranean Basin. To assess the value of within-season predictions, the model SiriusQuality2 was used to calculate wheat yields over a 9 yr period. Initially, the model was run with observed daily weather to obtain the reference yields. Then, yield predictions were calculated at a monthly time step, starting from 6 mo before harvest, by feeding the model with observed weather from the beginning of the growing season until a specific date and then with synthetic weather constructed using the 3 methods, historical, analogue or empirical, until the end of the growing season. The results showed that it is possible to predict durum wheat yield over the Mediterranean Basin with an accuracy of normalized root means squared error of <20%, from 5 to 6 mo earlier for the historical and empirical methods and 3 mo earlier for the analogue method. Overall, the historical method performed better than the others. Nonetheless, the analogue and empirical methods provided better estimations for low-yielding and high-yielding years, thus indicating great potential to provide more accurate predictions for years that deviate from average conditions.
|
|
|
Semenov, M. A., & Stratonovitch, P. (2015). Adapting wheat ideotypes for climate change: accounting for uncertainties in CMIP5 climate projections. Clim. Res., 65, 123–139.
Abstract: This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for the downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were integrated with LARS-WG. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM x RCP, a climate sensitivity index could be used to select a subset of GCMs which preserves the range of uncertainty found in CMIP5. This would allow us to quantify uncertainty in predictions of impacts resulting fromthe CMIP5 ensemble by conducting fewer simulation experiments. In a case study, we describe the use of the Sirius wheat simulation model to design in silico wheat ideotypes that are optimised for future climates in Europe, sampling uncertainty in GCMs, emission scenarios, time periods and European locations with contrasting climates. Two contrasting GCMs were selected for the analysis, ‘hot’ HadGEM2-ES and ‘cool’ GISS-E2-R-CC. Despite large uncertainty in future climate projections, we were able to identify target traits for wheat improvement which may assist breeding for high-yielding wheat cultivars with increased yield stability.
|
|
|
Semenov, M. A., Pilkington-Bennett, S., & Calanca, P. (2013). Validation of ELPIS 1980-2010 baseline scenarios using the observed European Climate Assessment data set. Clim. Res., 57(1), 1–9.
Abstract: Local-scale daily climate scenarios are required for assessment of climate change impacts. ELPIS is a repository of local-scale climate scenarios for Europe, which are based on the LARS-WG weather generator and future projections from 2 multi-model ensembles, CMIP3 and EU-ENSEMBLES. In ELPIS, the site parameters for the 1980-2010 baseline scenarios were estimated by LARS-WG using daily weather from the European Crop Growth Monitoring System (CGMS) used in many European agricultural assessment studies. The objective of this paper was to compare ELPIS baseline scenarios with observed daily weather obtained independently from the European Climate Assessment (ECA) data set. Several statistical tests were used to compare distributions of climatic variables derived from ECA-observed daily weather and ELPIS-generated baseline scenarios. About 30% of selected sites have a difference in altitude of > 50 m compared with the CGMS grid-cell altitude that was selected to represent agricultural land within a grid-cell. Differences in altitude can explain significant Kolmogorov-Smirnov test (KS-test) results for distribution of daily temperature and in t-tests for temperature monthly means, because of the well-known negative correlation between temperature and elevation. For daily precipitation, the KS-test showed little difference between generated and observed data; however, the more sensitive t-test showed significant results for the sites where altitude differences were large. Approximately 11% of sites showed small positive or negative bias in monthly solar radiation, although 86% sites showed > 3 significant t-test results for monthly means. These results can be explained by differences in conversion of sunshine hours to solar radiation used in CGMS and LARS-WG. We conclude that, considering the limitations above, ELPIS baseline scenarios are suitable for agricultural impact assessments in Europe.
|
|