|
Abstract |
This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for the downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were integrated with LARS-WG. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM x RCP, a climate sensitivity index could be used to select a subset of GCMs which preserves the range of uncertainty found in CMIP5. This would allow us to quantify uncertainty in predictions of impacts resulting fromthe CMIP5 ensemble by conducting fewer simulation experiments. In a case study, we describe the use of the Sirius wheat simulation model to design in silico wheat ideotypes that are optimised for future climates in Europe, sampling uncertainty in GCMs, emission scenarios, time periods and European locations with contrasting climates. Two contrasting GCMs were selected for the analysis, ‘hot’ HadGEM2-ES and ‘cool’ GISS-E2-R-CC. Despite large uncertainty in future climate projections, we were able to identify target traits for wheat improvement which may assist breeding for high-yielding wheat cultivars with increased yield stability. |
|