|
Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob. Environ. Change, 37, 43–55.
Abstract: Since 1970, global agricultural production has more than doubled with agriculture and land-use change now responsible for similar to 1/4 of greenhouse gas emissions from human activities. Yet, while greenhouse gas (GHG) emissions per unit of agricultural product have been reduced at a global level, trends in world regions have been quantified less thoroughly. The KPI (Kaya-Porter Identity) is a novel framework for analysing trends in agricultural production and land-use change and related GHG emissions. We apply this to assess trends and differences in nine world regions over the period 1970-2007. We use a deconstructed analysis of emissions from the mix of multiple sources, and show how each is changing in terms of absolute emissions on a per area and per produced unit basis, and how the change of emissions from each source contributes to the change in total emissions over time. The doubling of global agricultural production has mainly been delivered by developing and transitional countries, and this has been mirrored by increased GHG emissions. The decoupling of emissions from production shows vast regional differences. Our estimates show that emissions per unit crop (as kg CO2-equivalents per Giga Joule crop product), in Oceania, have been reduced by 94% from 1093 to 69; in Central & South America by 57% from 849 to 362; in sub-Saharan Africa by 27% from 421 to 309, and in Europe by 56% from 86 to 38. Emissions per unit livestock (as kg CO2-eq. GJ(-1) livestock product) have reduced; in sub-Saharan Africa by 24% from 6001 to 4580; in Central & South America by 61% from 3742 to 1448; in Central & Eastern Asia by 82% from 3,205 to 591, and; in North America by 28% from 878 to 632. In general, intensive and industrialised systems show the lowest emissions per unit of agricultural production. (C) 2016 Elsevier Ltd. All rights reserved.
|
|
|
Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050. Glob. Chang. Biol., 22(2), 763–781.
Abstract: Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.
|
|
|
Bojar, W., Knopik, L., Żarski, J., & Kuśmierek-Tomaszewska, R. (2016). Integrated assessment of crop productivity based on the food supply forecasting. Agricultural Economics – Czech, 61(11), 502–510.
Abstract: Climate change scenarios suggest that long periods without rainfall will occur in the future often causing instability of the agricultural products market. The aim of our research was to build a model describing the amount of precipitation and droughts for forecasting crop yields in the future. In this study, we analysed a non-standard mixture of gamma and one point distributions as the model of rainfall. On the basis of the rainfall data, one can estimate parameters of the distribution. Parameter estimators were constructed using a method of maximum likelihood. The obtained rainfall data allow confirming the hypothesis of the adequacy of the proposed rainfall models. Long series of droughts allow one to determine the probabilities of adverse phenomena in agriculture. Based on the model, yields of barley in the years 2030 and 2050 were forecasted which can be used for the assessment of other crops productivity. The results obtained with this approach can be used to predict decreases in agricultural production caused by prospective rainfall shortages. This will enable decision makers to shape effective agricultural policies in order to learn how to balance the food supplies and demands through an appropriate management of stored raw food materials and import/export policies.
|
|
|
Daccache, A., Ciurana, J. S., Diaz, J. A. R., & Knox, J. W. (2014). Water and energy footprint of irrigated agriculture in the Mediterranean region. Environ. Res. Lett., 9(12), 124014.
Abstract: Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m(3) kg(-1)) and energy (CO2 kg(-1)) productivity and identify vulnerable areas or `hotspots’. For a selected key crops in the region, irrigation accounts for 61 km(3) yr(-1) of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 tMm(-3) and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km(3) of water but would correspondingly increase CO2 emissions by around +135\%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km(3) yr(-1) (+137\%) whilst CO2 emissions would rise by +270\%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.
|
|
|
De Swaef, T., Bellocchi, G., Aper, J., Lootens, P., & Roldan-Ruiz, I. (2019). Use of identifiability analysis in designing phenotyping experiments for modelling forage production and quality. J. Experim. Bot., 70(9), 2587–2604.
Abstract: Agricultural systems models are complex and tend to be over-parameterized with respect to observational datasets. Practical identifiability analysis based on local sensitivity analysis has proved effective in investigating identifiable parameter sets in environmental models, but has not been applied to agricultural systems models. Here, we demonstrate that identifiability analysis improves experimental design to ensure independent parameter estimation for yield and quality outputs of a complex grassland model. The Pasture Simulation model (PaSim) was used to demonstrate the effectiveness of practical identifiability analysis in designing experiments and measurement protocols within phe-notyping experiments with perennial ryegrass. Virtual experiments were designed combining three factors: frequency of measurements, duration of the experiment. and location of trials. Our results demonstrate that (i) PaSim provides sufficient detail in terms of simulating biomass yield and quality of perennial ryegrass for use in breeding, (ii) typical breeding trials are insufficient to parameterize all influential parameters, (iii) the frequency of measurements is more important than the number of growing seasons to improve the identifiability of PaSim parameters, and (iv) identifiability analysis provides a sound approach for optimizing the design of multi-location trials. Practical identifiability analysis can play an important role in ensuring proper exploitation of phenotypic data and cost-effective multi-location experimental designs. Considering the growing importance of simulation models, this study supports the design of experiments and measurement protocols in the phenotyping networks that have recently been organized.
|
|