toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) De Swaef, T.; Bellocchi, G.; Aper, J.; Lootens, P.; Roldan-Ruiz, I. doi  openurl
  Title Use of identifiability analysis in designing phenotyping experiments for modelling forage production and quality Type Journal Article
  Year 2019 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 70 Issue 9 Pages 2587-2604  
  Keywords Breeding; grassland modelling; identifiability analysis; perennial; ryegrass; phenotyping; sensitivity analysis; pasture simulation-model; practical identifiability; crop; water; parameters; systems; carbon; uncertainty; sensitivity; emissions  
  Abstract Agricultural systems models are complex and tend to be over-parameterized with respect to observational datasets. Practical identifiability analysis based on local sensitivity analysis has proved effective in investigating identifiable parameter sets in environmental models, but has not been applied to agricultural systems models. Here, we demonstrate that identifiability analysis improves experimental design to ensure independent parameter estimation for yield and quality outputs of a complex grassland model. The Pasture Simulation model (PaSim) was used to demonstrate the effectiveness of practical identifiability analysis in designing experiments and measurement protocols within phe-notyping experiments with perennial ryegrass. Virtual experiments were designed combining three factors: frequency of measurements, duration of the experiment. and location of trials. Our results demonstrate that (i) PaSim provides sufficient detail in terms of simulating biomass yield and quality of perennial ryegrass for use in breeding, (ii) typical breeding trials are insufficient to parameterize all influential parameters, (iii) the frequency of measurements is more important than the number of growing seasons to improve the identifiability of PaSim parameters, and (iv) identifiability analysis provides a sound approach for optimizing the design of multi-location trials. Practical identifiability analysis can play an important role in ensuring proper exploitation of phenotypic data and cost-effective multi-location experimental designs. Considering the growing importance of simulation models, this study supports the design of experiments and measurement protocols in the phenotyping networks that have recently been organized.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5231  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: