toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Elsgaard, L.; Børgesen, C.D.; Olesen, J.E.; Siebert, S.; Ewert, F.; Peltonen-Sainio, P.; Rötter, R.P.; Skjelvåg, A.O. doi  openurl
  Title Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe Type Journal Article
  Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A  
  Volume 29 Issue 10 Pages 1514-1526  
  Keywords Agriculture/*economics/trends; Animals; Avena/chemistry/economics/*growth & development/microbiology; *Climate Change/economics; Crops, Agricultural/chemistry/economics/*growth & development/microbiology; Europe; *Food Safety; Forecasting/methods; Fungi/growth & development/metabolism; Humans; Models, Biological; Models, Economic; Mycotoxins/analysis/biosynthesis; Soil Pollutants/adverse effects/analysis; Spatio-Temporal Analysis; Triticum/chemistry/economics/*growth & development/microbiology; Uncertainty; Weather; Zea mays/chemistry/economics/*growth & development/microbiology  
  Abstract Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-0049 1944-0057 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4585  
Permanent link to this record
 

 
Author Mandryk, M.; Reidsma, P.; van Ittersum, M.K. url  doi
openurl 
  Title Scenarios of long-term farm structural change for application in climate change impact assessment Type Journal Article
  Year 2012 Publication Landscape Ecology Abbreviated Journal Landscape Ecol.  
  Volume 27 Issue 4 Pages 509-527  
  Keywords agriculture; adaptation; climate change; farm structural change; flevoland; agricultural land-use; future; policy; adaptation; diversification; vulnerability; productivity; consequences; variability; performance  
  Abstract Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, adaptation to climate change must be considered in the context of other driving forces that will cause farms of the future to look differently from today’s farms. In this paper we use a historical analysis of the influence of different drivers on farm structure, complemented with literature and stakeholder consultations, to assess future structural change of farms in a region under different plausible futures. As climate change is one of the drivers considered, this study thus puts climate change impact and adaptation into the context of other drivers. The province of Flevoland in the north of The Netherlands was used as case study, with arable farming as the main activity. To account for the heterogeneity of farms and to indicate possible directions of farm structural change, a farm typology was developed. Trends in past developments in farm types were analyzed with data from the Dutch agricultural census. The historical analysis allowed to detect the relative importance of driving forces that contributed to farm structural changes. Simultaneously, scenario assumptions about changes in these driving forces elaborated at global and European levels, were downscaled for Flevoland, to regional and farm type level in order to project impacts of drivers on farm structural change towards 2050. Input from stakeholders was also used to detail the downscaled scenarios and to derive historical and future relationships between drivers and farm structural change. These downscaled scenarios and future driver-farm structural change relationships were used to derive quantitative estimations of farm structural change at regional and farm type level in Flevoland. In addition, stakeholder input was used to also derive images of future farms in Flevoland. The estimated farm structural changes differed substantially between the two scenarios. Our estimations of farm structural change provide a proper context for assessing impacts of and adaptation to climate change in 2050 at crop and farm level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 1572-9761 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4477  
Permanent link to this record
 

 
Author Lai, R.; Seddaiu, G.; Gennaro, L.; Roggero, P.P. url  doi
openurl 
  Title Effects of nitrogen fertilizer sources and temperature on soil CO2 efflux in Italian ryegrass crop under Mediterranean conditions Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 2 Pages 27  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4478  
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. url  doi
openurl 
  Title Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization Type Journal Article
  Year 2012 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 12 Issue 3 Pages 407-419  
  Keywords Modelling; Climate change; Agronomic adaptation strategies; Yield; Tomato; Winter durum wheat; air co2 enrichment; change scenarios; cropping systems; change impacts; simulation; agriculture; variability; increase; model; responses; Environmental Sciences & Ecology  
  Abstract Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2A degrees C (centred over 2030-2060) and +5A degrees C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5A degrees C future climate scenario. Under the +2A degrees C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2A degrees C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4480  
Permanent link to this record
 

 
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. url  doi
openurl 
  Title Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: yield analysis and soil fertility Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 15  
  Keywords DSSAT model; CENTURY-module; climate change; winter durum wheat; tomato, crop rotation  
  Abstract Cropping systems are affected by climate change because of the strong relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. The increasing temperatures and the reduction of available water resources may result in negative impacts on the agricultural activity in Mediterranean environments than other areas. In this study the CERES-Wheat and CROPGRO-Tomato models were used to assess the effects of climate change on winter wheat (Triticum durum L.) and processing tomato (Lycopersicon aesculentum Mill.) in one of most productive areas of Italy, located in the northern part of the Puglia region. In particular we have compared three different General Circulation Models (HadCM3, CCSM3, ECHAM5) subjected to a statistical downscaling under two future IPCC scenarios (B1 and A2). The analysis was carried out at regional scale repeating the simulations for seven homogeneous area characterizing the spatial variability of the region. In the second part of the study, considering only HadCM3 data set, climate change impact on long-term sequences of the two crops combined in three crop rotations were evaluated in terms of yield performances and soil fertility as indicated by the soil organic content of carbon and nitrogen. The comparison between GCMs showed no significant differences for winter durum wheat yield, while noticeable differences were found for yield and irrigation requirements of tomato. Under future scenarios, the production levels were reduced for tomato, whereas positive yield effects were observed for winter durum wheat. For winter durum wheat the simulation indicated that two- and three-year rotations, including one year of tomato cultivation, improved the cereal yield and this positive effect maintained its validity also in future scenarios. For both crops higher requirements of water and nitrogen were predicted under future scenarios. This result coupled with the decrease of yield caused negative reduction of water use efficiency and nitrogen use efficiency for tomato cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: