toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kunert, K.J.; van Wyk, S.G.; Cullis, C.A.; Vorster, B.J.; Foyer, C.H. doi  openurl
  Title (up) Potential use of phytocystatins in crop improvement, with a particular focus on legumes Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3559-3570  
  Keywords Crops, Agricultural/*growth & development/metabolism; Cystatins/*metabolism; Cysteine Proteases/metabolism; Fabaceae/*growth & development/metabolism; Plant Proteins/*metabolism; Plant Root Nodulation; Stress, Physiological; Chilling; cystatin; drought; protein degradation; senescence; soybean; stress tolerance  
  Abstract Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that function by preventing the catalysis of papain-like cysteine proteases. The action of cystatins in biotic stress resistance has been studied intensively, but relatively little is known about their functions in plant growth and defence responses to abiotic stresses, such as drought. Extreme weather events, such as drought and flooding, will have negative impacts on the yields of crop plants, particularly grain legumes. The concepts that changes in cellular protein content and composition are required for acclimation to different abiotic stresses, and that these adjustments are achieved through regulation of proteolysis, are widely accepted. However, the nature and regulation of the protein turnover machinery that underpins essential stress-induced cellular restructuring remain poorly characterized. Cysteine proteases are intrinsic to the genetic programmes that underpin plant development and senescence, but their functions in stress-induced senescence are not well defined. Transgenic plants including soybean that have been engineered to constitutively express phytocystatins show enhanced tolerance to a range of different abiotic stresses including drought, suggesting that manipulation of cysteine protease activities by altered phytocystatin expression in crop plants might be used to improve resilience and quality in the face of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4564  
Permanent link to this record
 

 
Author Bodirsky, B.L.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Rolinski, S.; Weindl, I.; Schmitz, C.; Müller, C.; Bonsch, M.; Humpenöder, F.; Biewald, A.; Stevanovic, M. url  doi
openurl 
  Title (up) Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution Type Journal Article
  Year 2014 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 5 Issue Pages 3858  
  Keywords Animals; Crops, Agricultural/metabolism/*supply & distribution; Environmental Pollution/*prevention & control; *Food Supply; Humans; Models, Theoretical; Nitrogen Fixation; *Population Growth; Reactive Nitrogen Species/*supply & distribution  
  Abstract Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4513  
Permanent link to this record
 

 
Author Baker, A.; Ceasar, S.A.; Palmer, A.J.; Paterson, J.B.; Qi, W.; Muench, S.P.; Baldwin, S.A. doi  openurl
  Title (up) Replace, reuse, recycle: improving the sustainable use of phosphorus by plants Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3523-3540  
  Keywords Conservation of Natural Resources; Crops, Agricultural/growth & development/metabolism; Gene Expression Regulation, Plant; Phosphorus/*metabolism; Plant Proteins/genetics/metabolism; Plants/genetics/*metabolism; Fertilizers; membrane transporters; nutrient recycling; phosphate; phosphate signalling; transcription factors  
  Abstract The ‘phosphorus problem’ has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4548  
Permanent link to this record
 

 
Author Elsgaard, L.; Børgesen, C.D.; Olesen, J.E.; Siebert, S.; Ewert, F.; Peltonen-Sainio, P.; Rötter, R.P.; Skjelvåg, A.O. doi  openurl
  Title (up) Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe Type Journal Article
  Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A  
  Volume 29 Issue 10 Pages 1514-1526  
  Keywords Agriculture/*economics/trends; Animals; Avena/chemistry/economics/*growth & development/microbiology; *Climate Change/economics; Crops, Agricultural/chemistry/economics/*growth & development/microbiology; Europe; *Food Safety; Forecasting/methods; Fungi/growth & development/metabolism; Humans; Models, Biological; Models, Economic; Mycotoxins/analysis/biosynthesis; Soil Pollutants/adverse effects/analysis; Spatio-Temporal Analysis; Triticum/chemistry/economics/*growth & development/microbiology; Uncertainty; Weather; Zea mays/chemistry/economics/*growth & development/microbiology  
  Abstract Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-0049 1944-0057 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4585  
Permanent link to this record
 

 
Author Heinemann, A.B.; Barrios-Perez, C.; Ramirez-Villegas, J.; Arango-Londoño, D.; Bonilla-Findji, O.; Medeiros, J.C.; Jarvis, A. doi  openurl
  Title (up) Variation and impact of drought-stress patterns across upland rice target population of environments in Brazil Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3625-3638  
  Keywords Brazil; Climate; Computer Simulation; Crops, Agricultural/physiology; *Droughts; *Environment; Geography; Oryza/*physiology; Plant Transpiration; *Stress, Physiological; Water; Breeding; Oryza sativa; environment classification; modelling; water deficit.  
  Abstract The upland rice (UR) cropped area in Brazil has decreased in the last decade. Importantly, a portion of this decrease can be attributed to the current UR breeding programme strategy, according to which direct grain yield selection is targeted primarily to the most favourable areas. New strategies for more-efficient crop breeding under non-optimal conditions are needed for Brazil’s UR regions. Such strategies should include a classification of spatio-temporal yield variations in environmental groups, as well as a determination of prevalent drought types and their characteristics (duration, intensity, phenological timing, and physiological effects) within those environmental groups. This study used a process-based crop model to support the Brazilian UR breeding programme in their efforts to adopt a new strategy that accounts for the varying range of environments where UR is currently cultivated. Crop simulations based on a commonly grown cultivar (BRS Primavera) and statistical analyses of simulated yield suggested that the target population of environments can be divided into three groups of environments: a highly favorable environment (HFE, 19% of area), a favorable environment (FE, 44%), and least favourable environment (LFE, 37%). Stress-free conditions dominated the HFE group (69% likelihood) and reproductive stress dominated the LFE group (68% likelihood), whereas reproductive and terminal drought stress were found to be almost equally likely to occur in the FE group. For the best and worst environments, we propose specific adaptation focused on the representative stress, while for the FE, wide adaptation to drought is suggested. ‘Weighted selection’ is also a possible strategy for the FE and LFE environment groups.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4560  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: