toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Elsgaard, L.; Børgesen, C.D.; Olesen, J.E.; Siebert, S.; Ewert, F.; Peltonen-Sainio, P.; Rötter, R.P.; Skjelvåg, A.O. doi  openurl
  Title Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe Type Journal Article
  Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A  
  Volume 29 Issue 10 Pages 1514-1526  
  Keywords Agriculture/*economics/trends; Animals; Avena/chemistry/economics/*growth & development/microbiology; *Climate Change/economics; Crops, Agricultural/chemistry/economics/*growth & development/microbiology; Europe; *Food Safety; Forecasting/methods; Fungi/growth & development/metabolism; Humans; Models, Biological; Models, Economic; Mycotoxins/analysis/biosynthesis; Soil Pollutants/adverse effects/analysis; Spatio-Temporal Analysis; Triticum/chemistry/economics/*growth & development/microbiology; Uncertainty; Weather; Zea mays/chemistry/economics/*growth & development/microbiology  
  Abstract Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-0049 1944-0057 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4585  
Permanent link to this record
 

 
Author (up) Eory et al. url  openurl
  Title Economic assessment of greenhouse gas mitigation on livestock farms Type Report
  Year 2016 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 8 Issue Pages SP8-6  
  Keywords  
  Abstract Conference presentation PDF  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference LiveM2016: International livestock modelling conference – Modelling grassland-livestock systems under climate change  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4854  
Permanent link to this record
 

 
Author (up) Eory, V.; Hutchings, N. url  openurl
  Title Farm management and sustainability indicators: What and how to include in farm scale models Type Report
  Year 2016 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 8 Issue Pages Sp8-7  
  Keywords  
  Abstract Conference presentation PDF  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference LiveM2016: International livestock modelling conference – Modelling grassland-livestock systems under climate change  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4851  
Permanent link to this record
 

 
Author (up) Eory, V.; MacLeod, M.; Shrestha, S.; Roberts, D. url  openurl
  Title Linking an economic and a life-cycle analysis biophysical model to support agricultural greenhouse gas mitigation policy Type Journal Article
  Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue Pages 133-142  
  Keywords  
  Abstract Greenhouse gas (GHG) mitigation is one of the main challenges facing agriculture, exacerbated by the increasing demand for food, in particular for livestock products. Production expansion needs to be accompanied by reductions in the GHG emission intensity of agricultural products, if significant increases in emissions are to be avoided. Suggested farm management changes often have systemic effects on farm, therefore their investigation requires a whole farm approach. At the same time, changes in GHG emissions arising offfarm in food supply chains (pre- or post-farm) can also occur as a consequence of these management changes. A modelling framework that quantifies the whole-farm, life-cycle effects of GHG mitigation measures on emissions and farm finances has been developed. It is demonstrated via a case study of sexed semen on Scottish dairy farms. The results show that using sexed semen on dairy farms might be a costeffective way to reduce emissions from cattle production by increasing the amount of lower emission intensity ‘dairy beef’ produced. It is concluded that a modelling framework combining a GHG life cycle analysis model and an economic model is a useful tool to help designing targeted agri-environmental policies at regional and national levels. It has the flexibility to model a wide variety of farm types, locations and management changes, and the LCA-approach adopted helps to ensure that GHG emission leakage does not occur in the supply chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4670  
Permanent link to this record
 

 
Author (up) Ewert, F.; al, E. url  openurl
  Title Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C3.3  
  Keywords  
  Abstract Problems related to food security and sustainable development are complex (Ericksenet al., 2009) and require consideration of biophysical, economic, political, and social factors, as well as their interactions, at the level of farms, regions, nations, and globally. While the solution to such societal problems may be largely political, there is a growing recognition of the need for science to provide sound information to decision-makers (Meinke et al., 2009). Achieving this, particularly in light of largely uncertain future climate and socio-economic changes, will necessitate integrated assessment approaches and appropriate integrated assessment modeling (IAM) tools to perform them. Recent (Ewertet al., 2009; van Ittersumet al., 2008) and ongoing (Rosenzweiget al., 2013) studies have tried to advance the integrated use of biophysical and economic models to represent better the complex interactions in agricultural systems that largely determine food supply and sustainable resource use. Nonetheless, the challenges for model integration across disciplines are substantial and range from methodological and technical details to an often still-weak conceptual basis on which to ground model integration (Ewertet al., 2009; Janssenet al., 2011). New generations of integrated assessment models based on well-understood, general relationships that are applicable to different agricultural systems across the world are still to be developed. Initial efforts are underway towards this advancement (Nelsonet al., 2014; Rosenzweiget al., 2013). Together with economic and climate models, crop models constitute an essential model group in IAM for large-area cropping systems climate change impact assessments. However, in addition to challenges associated with model integration, inadequate representation of many crops and crop management systems, as well as a lack of data for model initialization and calibration, limit the integration of crop models with climate and economic models (Ewertet al., 2014). A particular obstacle is the mismatch between the temporal and spatial scale of input/output variables required and delivered by the various models in the IAM model chain. Crop models are typically developed, tested, and calibrated for field-scale application (Booteet al., 2013; see also Part 1, Chapter 4 in this volume) and short time-series limited to one or few seasons. Although crop models are increasingly used for larger areas and longer time-periods (Bondeauet al., 2007; Deryng et al., 2011; Elliottet al., 2014) rigorous evaluation of such applications is pending. Among the different sources of uncertainty related to climate and soil data, model parameters, and structure, the uncertainty from methods used to scale-up crop models has received little attention, though recent evaluations indicate that upscaling of crop models for climate change impact assessment and the resulting errors and uncertainties deserve attention in order to advance crop modeling for climate change assessment (Ewertet al., 2014; R¨ otteret al., 2011). This reality is now reflected in the scientific agendas of new international research projects and programs such as the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweiget al., 2013) and MACSUR (MACSUR, 2014). In this chapter, progress in evaluation of scaling methods with their related uncertainties is reviewed. Specific emphasis is on examining the results of systematic studies recently established in AgMIP and MACSUR. Main features of the respective simulation studies are presented together with preliminary results. Insights from these studies are summarized and conclusions for further work are drawn. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2096  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: