toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Coles, G.D.; Wratten, S.D.; Porter, J.R. doi  openurl
  Title Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production Type Journal Article
  Year 2016 Publication PeerJ Abbreviated Journal (down) PeerJ  
  Volume 4 Issue Pages 17  
  Keywords Agroecology; Forage utilisation; Food costs; Nutrition; Whole-year; production; New Zealand; Food access; Food security; humans  
  Abstract Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially available pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their town food needs. We hope that lour model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-8359 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4774  
Permanent link to this record
 

 
Author Mirschel, W.; Barkusky, D.; Hufnagel, J.; Kersebaum, K.C.; Nendel, C.; Laacke, L.; Luzi, K.; Rosner, G. url  openurl
  Title Coherent multi-variable field data set of an intensive cropping system for agro-ecosystem modelling from Müncheberg, Germany Type Journal Article
  Year 2016 Publication Open Data Journal for Agricultural Research Abbreviated Journal (down) Open Data J. Agric. Res.  
  Volume 2 Issue 1 Pages 1-10  
  Keywords  
  Abstract A six-year (1993-1998) multivariable data set for a four-plot intensive crop rotation (sugar beet – winter wheat – winter barley – winter rye – catch crop) located at Leibniz Centre for Agricultural Landscape Research (ZALF) Experimental Station, Müncheberg, Germany, is documented in detail. The experiment targets crop response to water supply on sandy soils (Eutric Cambisol), applying rain-fed and irrigated treatments. Weather as well as soil and crop processes were intensively monitored and management actions were consistently recorded. The data set contains coherent data for soil (water, nitrogen contents), crop (ontogenesis, plant, tiller and ear numbers, above-ground and root biomasses, yield, carbon and nitrogen content in biomass and their fractions, sugar content in beet), weather (all standard meteorological variables) and management (soil tillage, sowing, fertilisation, irrigation, harvest). In addition, observation methods are briefly described. The data set is available via the Open Research Data Portal at ZALF Müncheberg and is published under doi:10.4228/ZALF.1992.271. The data set was used for model intercomparison within the crop modelling part (CropM) of the international FACCE MACSUR project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-6378 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4762  
Permanent link to this record
 

 
Author Ingram, J.S.I.; Porter, J.R. doi  openurl
  Title Plant science and the food security agenda Type Journal Article
  Year 2015 Publication Nature Plants Abbreviated Journal (down) Nature Plants  
  Volume 1 Issue 11 Pages 15173  
  Keywords africa; maize  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2055-026x 2055-0278 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4705  
Permanent link to this record
 

 
Author Wang, E.; Martre, P.; Zhao, Z.; Ewert, F.; Maiorano, A.; Rötter, R.P.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Cammarano, D.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Liu, L.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ripoche, D.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.; Waha, K.; Wallach, D.; Wang, Z.; Wolf, J.; Zhu, Y.; Asseng, S. url  doi
openurl 
  Title The uncertainty of crop yield projections is reduced by improved temperature response functions Type Journal Article
  Year 2017 Publication Nature Plants Abbreviated Journal (down) Nature Plants  
  Volume 3 Issue Pages 17102  
  Keywords  
  Abstract Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections. Erratum: doi: 10.1038/nplants.2017.125  
  Address 2017-08-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5173  
Permanent link to this record
 

 
Author Porter, J.R.; Durand, J.L.; Elmayan, T. doi  openurl
  Title Edited plants should not be patented Type Journal Article
  Year 2016 Publication Nature Abbreviated Journal (down) Nature  
  Volume 530 Issue Pages 33  
  Keywords  
  Abstract CropM  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4827  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: