|
Ben Touhami, H., & Bellocchi, G. (2015). Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress. Ecological Informatics, 30, 356–364.
Abstract: As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables.
|
|
|
Hoffmann, H., Zhao, G., van Bussel, L. G. J., Enders, A., Specka, X., Sosa, C., et al. (2015). Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Clim. Res., 65, 53–69.
Abstract: Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.
|
|
|
Kollas, C., Kersebaum, K. C., Nendel, C., Manevski, K., Müller, C., Palosuo, T., et al. (2015). Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 70, 98–111.
Abstract: • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.
Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
|
|
|
Lorite, I. J., García-Vila, M., Santos, C., Ruiz-Ramos, M., & Fereres, E. (2013). AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Computers and Electronics in Agriculture, 96, 227–237.
Abstract: The crop simulation model AquaCrop, recently developed by FAO can be used for a wide range of purposes. However, in its present form, its use over large areas or for applications that require a large number of simulations runs (e.g., long-term analysis), is not practical without developing software to facilitate such applications. Two tools for managing the inputs and outputs of AquaCrop, named AquaData and AquaGIS, have been developed for this purpose and are presented here. Both software utilities have been programmed in Delphi v. 5 and in addition, AquaGIS requires the Geographic Information System (GIS) programming tool MapObjects. These utilities allow the efficient management of input and output files, along with a GIS module to develop spatial analysis and effect spatial visualization of the results, facilitating knowledge dissemination. A sample of application of the utilities is given here, as an AquaCrop simulation analysis of impact of climate change on wheat yield in Southern Spain, which requires extensive input data preparation and output processing. The use of AquaCrop without the two utilities would have required approximately 1000 h of work, while the utilization of AquaData and AquaGIS reduced that time by more than 99%. Furthermore, the use of GIS, made it possible to perform a spatial analysis of the results, thus providing a new option to extend the use of the AquaCrop model to scales requiring spatial and temporal analyses. (C) 2013 Elsevier B.V. All rights reserved.
|
|
|
Ma, S., Lardy, R., Graux, A. - I., Ben Touhami, H., Klumpp, K., Martin, R., et al. (2015). Regional-scale analysis of carbon and water cycles on managed grassland systems. Env. Model. Softw., 72, 356–371.
Abstract: Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213 g C m(-2) yr(-1), which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185 g C m(-2) yr(-1) on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006 g C m(-2) yr(-1), respectively, in agreement with observed average GPP (1230 g C m(-2) yr(-1)) and RECO (1046 g C m(-2) yr(-1)). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was similar to 5-16 g C week(-1) across the study sites, while the goodness of fit (R-2) was similar to 0.4-0.9. For evapotranspiration (ET), the average value of simulated ET (415 mmyr(-1)) for all sites and years is close to the average value of the observed ET (451 mm yr(-1)) by flux towers (on a weekly basis, RMSE similar to 2-8 mm week(-1); R-2 = 0.3-0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system.
|
|