|
Abstract |
Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213 g C m(-2) yr(-1), which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185 g C m(-2) yr(-1) on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006 g C m(-2) yr(-1), respectively, in agreement with observed average GPP (1230 g C m(-2) yr(-1)) and RECO (1046 g C m(-2) yr(-1)). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was similar to 5-16 g C week(-1) across the study sites, while the goodness of fit (R-2) was similar to 0.4-0.9. For evapotranspiration (ET), the average value of simulated ET (415 mmyr(-1)) for all sites and years is close to the average value of the observed ET (451 mm yr(-1)) by flux towers (on a weekly basis, RMSE similar to 2-8 mm week(-1); R-2 = 0.3-0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system. |
|