|
Baranowski, P., Krzyszczak, J., Slawinski, C., Hoffmann, H., Kozyra, J., Nieróbca, A., et al. (2015). Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res., 65, 39–52.
Abstract: Agro-meteorological quantities are often in the form of time series, and knowledge about their temporal scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and nonstationarities. The objective of this study was to characterise scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological quantities through multifractal detrended fluctuation analysis (MFDFA). For this purpose, MFDFA was performedwith 11 322 measured time series (31 yr) of daily air temperature, wind velocity, relative air humidity, global radiation and precipitation from stations located in Finland, Germany, Poland and Spain. The empirical singularity spectra indicated their multifractal structure. The richness of the studied multifractals was evaluated by the width of their spectrum, indicating considerable differences in dynamics and development. In log-log plots of the cumulative distributions of all meteorological parameters the linear functions prevailed for high values of the response, indicating that these distributions were consistent with power-law asymptotic behaviour. Additionally, we investigated the type of multifractality that underlies the q-dependence of the generalized Hurst exponent by analysing the corresponding shuffled and surrogate time series. For most of the studied meteorological parameters, the multifractality is due to different long-range correlations for small and large fluctuations. Only for precipitation does the multifractality result mainly from broad probability function. This feature may be especially valuable for assessing the effect of change in climate dynamics.
|
|
|
Conradt, T., Wechsung, F., & Bronstert, A. (2013). Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances. Hydrol. Earth System Sci., 17(7), 2947–2966.
Abstract: A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.
|
|
|
Graversgaard, M., Hedelin, B., Smith, L., Gertz, F., Höjberg, A. L., Langford, J., et al. (2018). Opportunities and Barriers for Water Co-Governance – A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America. Sustainability, 10(5), 1634.
Abstract: Diffuse Water Pollution from Agriculture (DWPA) and its governance has received increased attention as a policy concern across the globe. Mitigation of DWPA is a complex problem that requires a mix of policy instruments and a multi-agency, broad societal response. In this paper, opportunities and barriers for developing co-governance, defined as collaborative societal involvement in the functions of government, and its suitability for mitigation of DWPA are reviewed using seven case studies in Europe (Poland, Denmark, Sweden, The Netherlands and UK), Australia (Murray-Darling Basin) and North America (State of Minnesota). An analytical framework for assessing opportunities and barriers of co-governance was developed and applied in this review. Results indicated that five key issues constitute both opportunities and barriers, and include: (i) pressure for change; (ii) connected governance structures and allocation of resources and funding; (iii) leadership and establishment of partnerships through capacity building; (iv) use and co-production of knowledge; and (v) time commitment to develop water co-governance.
|
|
|
Holman, I. P., Brown, C., Carter, T. R., Harrison, P. A., & Rounsevell, M. (2019). Improving the representation of adaptation in climate change impact models. Reg. Environ. Change, 19(3), 711–721.
Abstract: Climate change adaptation is a complex human process, framed by uncertainties and constraints, which is difficult to capture in existing assessment models. Attempts to improve model representations are hampered by a shortage of systematic descriptions of adaptation processes and their relevance to models. This paper reviews the scientific literature to investigate conceptualisations and models of climate change adaptation, and the ways in which representation of adaptation in models can be improved. The review shows that real-world adaptive responses can be differentiated along a number of dimensions including intent or purpose, timescale, spatial scale, beneficiaries and providers, type of action, and sector. However, models of climate change consequences for land use and water management currently provide poor coverage of these dimensions, instead modelling adaptation in an artificial and subjective manner. While different modelling approaches do capture distinct aspects of the adaptive process, they have done so in relative isolation, without producing improved unified representations. Furthermore, adaptation is often assumed to be objective, effective and consistent through time, with only a minority of models taking account of the human decisions underpinning the choice of adaptation measures (14%), the triggers that motivate actions (38%) or the time-lags and constraints that may limit their uptake and effectiveness (14%). No models included adaptation to take advantage of beneficial opportunities of climate change. Based on these insights, transferable recommendations are made on directions for future model development that may enhance realism within models, while also advancing our understanding of the processes and effectiveness of adaptation to a changing climate.
|
|
|
Lorite, I. J., Gabaldon-Leal, C., Ruiz-Ramos, M., Belaj, A., de la Rosa, R., Leon, L., et al. (2018). Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agric. Water Manage., 204, 247–261.
Abstract: AdaptaOlive is a simplified physically-based model that has been developed to assess the behavior of olive under future climate conditions in Andalusia, southern Spain. The integration of different approaches based on experimental data from previous studies, combined with weather data from 11 climate models, is aimed at overcoming the high degree of uncertainty in the simulation of the response of agricultural systems under predicted climate conditions. The AdaptaOlive model was applied in a representative olive orchard in the Baeza area, one of the main producer zone in Spain, with the cultivar ‘Picual’. Simulations for the end of the 21st century showed olive oil yield increases of 7.1 and 28.9% under rainfed and full irrigated conditions, respectively, while irrigation requirements decreased between 0.5 and 6.2% for full irrigation and regulated deficit irrigation, respectively. These effects were caused by the positive impact of the increase in atmospheric CO2 that counterbalanced the negative impacts of the reduction in rainfall. The high degree of uncertainty associated with climate projections translated into a high range of yield and irrigation requirement projections, confirming the need for an ensemble of climate models in climate change impact assessment. The AdaptaOlive model also was applied for evaluating adaptation strategies related to cultivars, irrigation strategies and locations. The best performance was registered for cultivars with early flowering dates and regulated deficit irrigation. Thus, in the Baeza area full irrigation requirements were reduced by 12% and the yield in rainfed conditions increased by 7% compared with late flowering cultivars. Similarly, regulated deficit irrigation requirements and yield were reduced by 46% and 18%, respectively, compared with full irrigation. The results confirm the promise offered by these strategies as adaptation measures for managing an olive crop under semi-arid conditions in a changing climate.
|
|