toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. url  doi
openurl 
  Title Multifractal analysis of meteorological time series to assess climate impacts Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 39-52  
  Keywords multifractal analysis; time series; agro-meteorological parameters; detrended fluctuation analysis; daily temperature records; catalonia ne spain; fractal analysis; river-basin; precipitation; variability; patterns; trends; china  
  Abstract Agro-meteorological quantities are often in the form of time series, and knowledge about their temporal scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and nonstationarities. The objective of this study was to characterise scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological quantities through multifractal detrended fluctuation analysis (MFDFA). For this purpose, MFDFA was performedwith 11 322 measured time series (31 yr) of daily air temperature, wind velocity, relative air humidity, global radiation and precipitation from stations located in Finland, Germany, Poland and Spain. The empirical singularity spectra indicated their multifractal structure. The richness of the studied multifractals was evaluated by the width of their spectrum, indicating considerable differences in dynamics and development. In log-log plots of the cumulative distributions of all meteorological parameters the linear functions prevailed for high values of the response, indicating that these distributions were consistent with power-law asymptotic behaviour. Additionally, we investigated the type of multifractality that underlies the q-dependence of the generalized Hurst exponent by analysing the corresponding shuffled and surrogate time series. For most of the studied meteorological parameters, the multifractality is due to different long-range correlations for small and large fluctuations. Only for precipitation does the multifractality result mainly from broad probability function. This feature may be especially valuable for assessing the effect of change in climate dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4666  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: