|
Grosz, B., Dechow, R., Gebbert, S., Hoffmann, H., Zhao, G., Constantin, J., et al. (2017). The implication of input data aggregation on up-scaling soil organic carbon changes. Env. Model. Softw., 96, 361–377.
Abstract: In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. (C)2017 Elsevier Ltd. All rights reserved.
|
|
|
Kim, D. - G., Thomas, A. D., Pelster, D., Rosenstock, T. S., & Sanz-Cobena, A. (2016). Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research. Biogeosciences, 13(16), 4789–4809.
Abstract: This paper summarizes currently available data on greenhouse gas (GHG) emissions from African natural ecosystems and agricultural lands. The available data are used to synthesize current understanding of the drivers of change in GHG emissions, outline the knowledge gaps, and suggest future directions and strategies for GHG emission research. GHG emission data were collected from 75 studies conducted in 22 countries (n = 244) in sub-Saharan Africa (SSA). Carbon dioxide (CO2) emissions were by far the largest contributor to GHG emissions and global warming potential (GWP) in SSA natural terrestrial systems. CO2 emissions ranged from 3.3 to 57.0 Mg CO2 ha(-1) yr(-1), methane (CH4) emissions ranged from -4.8 to 3.5 kg ha(-1) yr(-1) (-0.16 to 0.12 Mg CO2 equivalent (eq.) ha(-1) yr(-1)), and nitrous oxide (N2O) emissions ranged from -0.1 to 13.7 kg ha(-1) yr(-1) (-0.03 to 4.1 Mg CO2 eq. ha(-1) yr(-1)). Soil physical and chemical properties, rewetting, vegetation type, forest management, and land-use changes were all found to be important factors affecting soil GHG emissions from natural terrestrial systems. In aquatic systems, CO2 was the largest contributor to total GHG emissions, ranging from 5.7 to 232.0 Mg CO2 ha(-1) yr(-1), followed by -26.3 to 2741.9 kgCH(4) ha(-1) yr(-1) (-0.89 to 93.2 Mg CO2 eq. ha(-1) yr(-1)) and 0.2 to 3.5 kg N2O ha(-1) yr(-1) (0.06 to 1.0 Mg CO2 eq. ha(-1) yr(-1)). Rates of all GHG emissions from aquatic systems were affected by type, location, hydrological characteristics, and water quality. In croplands, soil GHG emissions were also dominated by CO2, ranging from 1.7 to 141.2 Mg CO2 ha(-1) yr(-1), with -1.3 to 66.7 kgCH(4) ha(-1) yr(-1) (-0.04 to 2.3 Mg CO2 eq. ha(-1) yr(-1)) and 0.05 to 112.0 kg N2O ha(-1) yr(-1) (0.015 to 33.4 Mg CO2 eq. ha(-1) yr(-1)). N2O emission factors (EFs) ranged from 0.01 to 4.1 %. Incorporation of crop residues or manure with inorganic fertilizers invariably resulted in significant changes in GHG emissions, but results were inconsistent as the magnitude and direction of changes were differed by gas. Soil GHG emissions from vegetable gardens ranged from 73.3 to 132.0 Mg CO2 ha(-1) yr(-1) and 53.4 to 177.6 kg N2O ha(-1) yr(-1) (15.9 to 52.9 Mg CO2 eq. ha(-1) yr(-1)) and N2O EFs ranged from 3 to 4 %. Soil CO2 and N2O emissions from agroforestry were 38.6 Mg CO2 ha(-1) yr(-1) and 0.2 to 26.7 kg N2O ha(-1) yr(-1) (0.06 to 8.0 Mg CO2 eq. ha(-1) yr(-1)), respectively. Improving fallow with nitrogen (N)-fixing trees led to increased CO2 and N2O emissions compared to conventional croplands. The type and quality of plant residue in the fallow is an important control on how CO2 and N2O emissions are affected. Throughout agricultural lands, N2O emissions slowly increased with N inputs below 150 kg N ha(-1) yr(-1) and increased exponentially with N application rates up to 300 kg N ha(-1) yr(-1). The lowest yield-scaled N2O emissions were reported with N application rates ranging between 100 and 150 kg N ha(-1). Overall, total CO2 eq. emissions from SSA natural ecosystems and agricultural lands were 56.9 +/- 12.7 x 10(9) Mg CO2 eq. yr(-1) with natural ecosystems and agricultural lands contributing 76.3 and 23.7 %, respectively. Additional GHG emission measurements are urgently required to reduce uncertainty on annual GHG emissions from the different land uses and identify major control factors and mitigation options for low-emission development. A common strategy for addressing this data gap may include identifying priorities for data acquisition, utilizing appropriate technologies, and involving international networks and collaboration.
|
|
|
Kim, Y., Berger, S., Kettering, J., Tenhunen, J., Haas, E., & Kiese, R. (2014). Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC. Ecol. Res., 29(3), 441–454.
Abstract: Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465-765 kg N ha(-1) year(-1)). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha(-1) year(-1) was the dominant reason for overall low nitrogen use efficiency (32-43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha(-1) year(-1), thus contributing an equal amount to total field emissions of about 5 kg N ha(-1) year(-1). Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50-60 %.
|
|
|
Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., et al. (2015). A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant Soil, 386(1-2), 125–149.
Abstract: Replacing paddy rice by upland systems such as maize cultivation is an on-going trend in SE Asia caused by increasing water scarcity and higher demand for meat. How such land management changes will feedback on soil C and N cycles and soil greenhouse gas emissions is not well understood at present. A new LandscapeDNDC biogeochemical module was developed that allows the effect of land management changes on soil C and N cycle to be simulated. The new module is applied in combination with further modules simulating microclimate and crop growth and evaluated against observations from field experiments. The model simulations agree well with observed dynamics of CH (4) emissions in paddy rice depending on changes in climatic conditions and agricultural management. Magnitude and peak emission periods of N (2) O from maize cultivation are simulated correctly, though there are still deficits in reproducing day-to-day dynamics. These shortcomings are most likely related to simulated soil hydrology and may only be resolved if LandscapeDNDC is coupled to more complex hydrological models. LandscapeDNDC allows for simulation of changing land management practices in SE Asia. The possibility to couple LandscapeDNDC to more complex hydrological models is a feature needed to better understand related effects on soil-atmosphere-hydrosphere interactions.
|
|
|
Ma, S., Lardy, R., Graux, A. - I., Ben Touhami, H., Klumpp, K., Martin, R., et al. (2015). Regional-scale analysis of carbon and water cycles on managed grassland systems. Env. Model. Softw., 72, 356–371.
Abstract: Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213 g C m(-2) yr(-1), which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185 g C m(-2) yr(-1) on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006 g C m(-2) yr(-1), respectively, in agreement with observed average GPP (1230 g C m(-2) yr(-1)) and RECO (1046 g C m(-2) yr(-1)). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was similar to 5-16 g C week(-1) across the study sites, while the goodness of fit (R-2) was similar to 0.4-0.9. For evapotranspiration (ET), the average value of simulated ET (415 mmyr(-1)) for all sites and years is close to the average value of the observed ET (451 mm yr(-1)) by flux towers (on a weekly basis, RMSE similar to 2-8 mm week(-1); R-2 = 0.3-0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system.
|
|