|
Angulo, C., Rötter, R., Lock, R., Enders, A., Fronzek, S., & Ewert, F. (2013). Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology, 170, 32–46.
Abstract: Process-based crop simulation models are increasingly used in regional climate change impact studies, but little is known about the implications of different calibration strategies on simulated yields. This study aims to assess the importance of region-specific calibration of five important field crops (winter wheat, winter barley, potato, sugar beet and maize) across 25 member countries of the European Union (EU25). We examine three calibration strategies and their implications on spatial and temporal yield variability in response to climate change: (i) calculation of phenology parameters only, (ii) consideration of both phenology calibration and a yield correction factor and (iii) calibration of phenology and selected growth processes. The analysis is conducted for 533 climate zones, considering 24 years of observed yield data (1983-2006). The best performing strategy is used to estimate the impacts of climate change, increasing CO2 concentration and technology development on yields for the five crops across EU25, using seven climate change scenarios for the period 2041-2064. Simulations and calibrations are performed with the crop model LINTUL2 combined with a calibration routine implemented in the modelling interface LINTUL-FAST. The results show that yield simulations improve if growth parameters are considered in the calibration for individual regions (strategy 3); e.g. RMSE values for simulated winter wheat yield are 2.36, 1.10 and 0.70 Mg ha(-1) for calibration strategies 1, 2 and 3, respectively. The calibration strategy did not only affect the model simulations under reference climate but also the extent of the simulated climate change impacts. Applying the calibrated model for impact assessment revealed that climatic change alone will reduce crop yields. Consideration of the effects of increasing CO2 concentration and technology development resulted in yield increases for all crops except maize (i.e. the negative effects of climate change were outbalanced by the positive effects of CO2 and technology change), with considerable differences between scenarios and regions. Our simulations also suggest some increase in yield variability due to climate change which, however, is less pronounced than the differences among scenarios which are particularly large when the effects of CO2 concentration and technology development are considered. Our results stress the need for region-specific calibration of crop models used for Europe-wide assessments. Limitations of the considered strategies are discussed. We recommend that future work should focus on obtaining more comprehensive, high quality data with a finer resolution allowing application of improved strategies for model calibration that better account for spatial differences and changes over time in the growth and development parameters used in crop models. (c) 2012 Elsevier B.V. All rights reserved.
|
|
|
Balkovič, J., van der Velde, M., Schmid, E., Skalský, R., Khabarov, N., Obersteiner, M., et al. (2013). Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agricultural Systems, 120, 61–75.
Abstract: Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
|
|
|
De Swaef, T., Bellocchi, G., Aper, J., Lootens, P., & Roldan-Ruiz, I. (2019). Use of identifiability analysis in designing phenotyping experiments for modelling forage production and quality. J. Experim. Bot., 70(9), 2587–2604.
Abstract: Agricultural systems models are complex and tend to be over-parameterized with respect to observational datasets. Practical identifiability analysis based on local sensitivity analysis has proved effective in investigating identifiable parameter sets in environmental models, but has not been applied to agricultural systems models. Here, we demonstrate that identifiability analysis improves experimental design to ensure independent parameter estimation for yield and quality outputs of a complex grassland model. The Pasture Simulation model (PaSim) was used to demonstrate the effectiveness of practical identifiability analysis in designing experiments and measurement protocols within phe-notyping experiments with perennial ryegrass. Virtual experiments were designed combining three factors: frequency of measurements, duration of the experiment. and location of trials. Our results demonstrate that (i) PaSim provides sufficient detail in terms of simulating biomass yield and quality of perennial ryegrass for use in breeding, (ii) typical breeding trials are insufficient to parameterize all influential parameters, (iii) the frequency of measurements is more important than the number of growing seasons to improve the identifiability of PaSim parameters, and (iv) identifiability analysis provides a sound approach for optimizing the design of multi-location trials. Practical identifiability analysis can play an important role in ensuring proper exploitation of phenotypic data and cost-effective multi-location experimental designs. Considering the growing importance of simulation models, this study supports the design of experiments and measurement protocols in the phenotyping networks that have recently been organized.
|
|
|
Dono, G., Cortignani, R., Dell’Unto, D., Deligios, P., Doro, L., Lacetera, N., et al. (2016). Winners and losers from climate change in agriculture: Insights from a case study in the Mediterranean basin. Agricultural Systems, 147, 65–75.
Abstract: The Mediterranean region has always shown a marked inter-annual variability in seasonal weather, creating uncertainty in decisional processes of cultivation and livestock breeding that should not be neglected when modeling farmers’ adaptive responses. This is especially relevant when assessing the impact of climate change (CC), which modifies the atmospheric variability and generates new uncertainty conditions, and the possibility of adaptation of agriculture. Our analysis examines this aspect reconstructing the effects of inter-annual climate variability in a diversified farming district that well represents a wide range of rainfed and irrigated agricultural systems in the Mediterranean area. We used a Regional Atmospheric Modelling System and a weather generator to generate 150 stochastic years of the present and near future climate. Then, we implemented calibrated crop and livestock models to estimate the corresponding productive responses in the form of probability distribution functions (PDFs) under the two climatic conditions. We assumed these PDFs able to represent the expectations of farmers in a discrete stochastic programming (DSP) model that reproduced their economic behaviour under uncertainty conditions. The comparison of the results in the two scenarios provided an assessment of the impact of CC, also taking into account the possibility of adjustment allowed by present technologies and price regimes. The DSP model is built in blocks that represent the farm typologies operating in the study area, each one with its own resource endowment, decisional constraints and economic response. Under this latter aspect, major differences emerged among farm typologies and sub-zones of the study area. A crucial element of differentiation was water availability, since only irrigated C3 crops took full advantage from the fertilization effect of increasing atmospheric CO2 concentration. Rainfed crop production was depressed by the expected reduction of spring rainfall associated to the higher temperatures. So, a dualism emerges between the smaller impact on crop production in the irrigated plain sub-zone, equipped with collective water networks and abundant irrigation resources, and the major negative impact in the hilly area, where these facilities and resources are absent. However intensive dairy farming was also negatively affected in terms of milk production and quality, and cattle mortality because of the increasing summer temperatures. This provides explicit guidance for addressing strategic adaptation policies and for framing farmers’ perception of CC, in order to help them to develop an awareness of the phenomena that are already in progress, which is a prerequisite for effective adaptation responses.
|
|
|
Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 64, 98–113.
Abstract: Increased climate variability and higher mean temperatures are expected across many world regions, both of which will contribute to more frequent extreme high temperatures events. Empirical evidence increasingly shows that short episodes of high temperature experienced around flowering can have large negative impacts on cereal grain yields, a phenomenon increasingly referred to as heat stress. Crop models are currently the best tools available to investigate how crops will grow under future climatic conditions, though the need to include heat stress effects has been recognized only relatively recently. We reviewed literature on both how key crop physiological processes and the observed yields under production conditions are impacted by high temperatures occurring particularly in the flowering and grain filling phases for wheat, maize and rice. This state of the art in crop response to heat stress was then contrasted with generic approaches to simulate the impacts of high temperatures in crop growth models. We found that the observed impacts of heat stress on crop yield are the end result of the integration of many processes, not all of which will be affected by a “high temperature” regime. This complexity confirms an important role for crop models in systematizing the effects of high temperatures on many processes under a range of environments and realizations of crop phenology. Four generic approaches to simulate high temperature impacts on yield were identified: (1) empirical reduction of final yield, (2) empirical reduction in daily increment in harvest index, (3) empirical reduction in grain number, and (4) semi-deterministic models of sink and source limitation. Consideration of canopy temperature is suggested as a promising approach to concurrently account for heat and drought stress, which are likely to occur simultaneously. Improving crop models’ response to high temperature impacts on cereal yields will require experimental data representative of field production and should be designed to connect what is already known about physiological responses and observed yield impacts. (C) 2014 Elsevier B.V. All rights reserved.
|
|