|
De Swaef, T., Bellocchi, G., Aper, J., Lootens, P., & Roldan-Ruiz, I. (2019). Use of identifiability analysis in designing phenotyping experiments for modelling forage production and quality. J. Experim. Bot., 70(9), 2587–2604.
Abstract: Agricultural systems models are complex and tend to be over-parameterized with respect to observational datasets. Practical identifiability analysis based on local sensitivity analysis has proved effective in investigating identifiable parameter sets in environmental models, but has not been applied to agricultural systems models. Here, we demonstrate that identifiability analysis improves experimental design to ensure independent parameter estimation for yield and quality outputs of a complex grassland model. The Pasture Simulation model (PaSim) was used to demonstrate the effectiveness of practical identifiability analysis in designing experiments and measurement protocols within phe-notyping experiments with perennial ryegrass. Virtual experiments were designed combining three factors: frequency of measurements, duration of the experiment. and location of trials. Our results demonstrate that (i) PaSim provides sufficient detail in terms of simulating biomass yield and quality of perennial ryegrass for use in breeding, (ii) typical breeding trials are insufficient to parameterize all influential parameters, (iii) the frequency of measurements is more important than the number of growing seasons to improve the identifiability of PaSim parameters, and (iv) identifiability analysis provides a sound approach for optimizing the design of multi-location trials. Practical identifiability analysis can play an important role in ensuring proper exploitation of phenotypic data and cost-effective multi-location experimental designs. Considering the growing importance of simulation models, this study supports the design of experiments and measurement protocols in the phenotyping networks that have recently been organized.
|
|
|
Kässi, P., Känkänen, H., Niskanen, O., Lehtonen, H., & Höglind, M. (2015). Farm level approach to manage grass yield variation under climate change in Finland and north-western Russia. Biosystems Engineering, 140, 11–22.
Abstract: Cattle feeding in Northern Europe is based on grass silage, but grass growth is highly dependent on weather conditions. If ensuring sufficient silage availability in every situation is prioritised, the lowest expected yield level determines the cultivated area in farmers’ decision-making. One way to manage the variation in grass yield is to increase grass production and silage storage capacity so that they exceed the annual consumption at the farm. The cost of risk management in the current and the projected future climate was calculated taking into account grassland yield and yield variability for three study areas under current and mid-21st century climate conditions. The dataset on simulated future grass yields used as input for the risk management calculations were taken from a previously published simulation study. Strategies investigated included using up to 60% more silage grass area than needed in a year with average grass yields, and storing silage for up to 6 months more than consumed in a year (buffer storage). According to the results, utilising an excess silage grass area of 20% and a silage buffer storage capacity of 6 months were the most economic ways of managing drought risk in both the baseline climate and the projected climate of 2046-2065. It was found that the silage yield risk due to drought is likely to decrease in all studied locations, but the drought risk and costs implied still remain significant. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
|
|