|
Bojar, W., Knopik, L., Żarski, J., Sławiński, C., Baranowski, P., & Żarski, W. (2014). Impact of extreme climate changes on the forecasted agriculture production. Acta Agrophysica, 21(4), 415–431.
Abstract: The paper presents general characteristics of resources and outputs of agriculture in the Kujawsko-Pomorskie and Lubelskie Regions, based on statistical databases and literature review. Some specific features of the regions, with special consideration for the predicted extreme climate changes, are also included. Next, some statistically significant dependencies between the climatic parameters and yields of selected important crops in the abovementioned regions were worked out on the basis of empirical survey conducted in the University of Technology and Life Sciences, Bydgoszcz, and the Institute of Agrophysics in Lublin. Creating an appropriate method of forecasting long series of ten days without precipitation was necessary to find the desired dependencies. Third, some efforts were taken to make integrated assessments of forecast agricultural outputs influenced by climate extreme phenomena on the basis of the yield-precipitation relations obtained and on the data coming from wide area model regional outputs such as prices of farmland and produce.
|
|
|
Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Popp, A., & Muller, C. (2014). Forecasting technological change in agriculture-An endogenous implementation in a global, and use model. Technological Forecasting and Social Change, 81, 236–249.
Abstract: Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 029 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (”Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995-2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change. (C) 2013 Elsevier Inc. All rights reserved.
|
|
|
Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Popp, A., & Müller, C. (2014). Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technological Forecasting and Social Change, 81, 236–249.
Abstract: ► Endogenous technological change in an economic land use model ► Estimation of yield elasticity with respect to investments in technological change ► Projections of future agricultural productivity rates ► Validation with observed data and historic trends ► Trade-off between required technological change and forest protection objectives Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 0.29 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (“Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995–2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change.
|
|
|
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., et al. (2013). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. U. S. A., 111(9), 3239–3244.
Abstract: We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
|
|
|
Elsgaard, L., Børgesen, C. D., Olesen, J. E., Siebert, S., Ewert, F., Peltonen-Sainio, P., et al. (2012). Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Food Addit. Contam. Part A, 29(10), 1514–1526.
Abstract: Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.
|
|