|
Semenov, M. A., & Stratonovitch, P. (2015). Adapting wheat ideotypes for climate change: accounting for uncertainties in CMIP5 climate projections. Clim. Res., 65, 123–139.
Abstract: This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for the downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were integrated with LARS-WG. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM x RCP, a climate sensitivity index could be used to select a subset of GCMs which preserves the range of uncertainty found in CMIP5. This would allow us to quantify uncertainty in predictions of impacts resulting fromthe CMIP5 ensemble by conducting fewer simulation experiments. In a case study, we describe the use of the Sirius wheat simulation model to design in silico wheat ideotypes that are optimised for future climates in Europe, sampling uncertainty in GCMs, emission scenarios, time periods and European locations with contrasting climates. Two contrasting GCMs were selected for the analysis, ‘hot’ HadGEM2-ES and ‘cool’ GISS-E2-R-CC. Despite large uncertainty in future climate projections, we were able to identify target traits for wheat improvement which may assist breeding for high-yielding wheat cultivars with increased yield stability.
|
|
|
Semenov, M. A., Pilkington-Bennett, S., & Calanca, P. (2013). Validation of ELPIS 1980-2010 baseline scenarios using the observed European Climate Assessment data set. Clim. Res., 57(1), 1–9.
Abstract: Local-scale daily climate scenarios are required for assessment of climate change impacts. ELPIS is a repository of local-scale climate scenarios for Europe, which are based on the LARS-WG weather generator and future projections from 2 multi-model ensembles, CMIP3 and EU-ENSEMBLES. In ELPIS, the site parameters for the 1980-2010 baseline scenarios were estimated by LARS-WG using daily weather from the European Crop Growth Monitoring System (CGMS) used in many European agricultural assessment studies. The objective of this paper was to compare ELPIS baseline scenarios with observed daily weather obtained independently from the European Climate Assessment (ECA) data set. Several statistical tests were used to compare distributions of climatic variables derived from ECA-observed daily weather and ELPIS-generated baseline scenarios. About 30% of selected sites have a difference in altitude of > 50 m compared with the CGMS grid-cell altitude that was selected to represent agricultural land within a grid-cell. Differences in altitude can explain significant Kolmogorov-Smirnov test (KS-test) results for distribution of daily temperature and in t-tests for temperature monthly means, because of the well-known negative correlation between temperature and elevation. For daily precipitation, the KS-test showed little difference between generated and observed data; however, the more sensitive t-test showed significant results for the sites where altitude differences were large. Approximately 11% of sites showed small positive or negative bias in monthly solar radiation, although 86% sites showed > 3 significant t-test results for monthly means. These results can be explained by differences in conversion of sunshine hours to solar radiation used in CGMS and LARS-WG. We conclude that, considering the limitations above, ELPIS baseline scenarios are suitable for agricultural impact assessments in Europe.
|
|