|
Dumont, B., Leemans, V., Mansouri, M., Bodson, B., Destain, J. - P., & Destain, M. - F. (2014). Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Env. Model. Softw., 52, 121–135.
Abstract: This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modelling. (C) 2013 Elsevier Ltd. All rights reserved.
|
|
|
Montesino-San Martín, M., Olesen, J. E., & Porter, J. R. (2015). Can crop-climate models be accurate and precise? A case study for wheat production in Denmark. Agricultural and Forest Meteorology, 202, 51–60.
Abstract: Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.
|
|