MACSUR Literature Database
Home
|
Show All
|
Simple Search
|
Advanced Search
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
contains:
...
1–1 of 1 record found matching your query (
RSS
):
Search & Display Options
Search within Results:
Field:
author
title
year
keywords
abstract
type
publication
abbrev_journal
volume
issue
pages
thesis
publisher
place
editor
series_title
language
area
notes
call_number
serial
contains:
...
Exclude matches
Display Options:
Field:
all fields
keywords & abstract
additional fields
records per page
Select All
Deselect All
<<
1
>>
List View
|
Citations
|
Details
Record
Links
Author
Montesino-San Martín, M.
;
Olesen, J.E.
;
Porter, J.R.
Title
Can crop-climate models be accurate and precise? A case study for wheat production in Denmark
Type
Journal Article
Year
2015
Publication
Agricultural and Forest Meteorology
Abbreviated Journal
Agricultural and Forest Meteorology
Volume
202
Issue
Pages
51-60
Keywords
Uncertainty
;
Model intercomparison
;
Bayesian approach
;
Climate change
;
Wheat
;
Denmark
;
uncertainty analysis
;
simulation-models
;
bayesian-approach
;
change
;
impact
;
yields
;
variability
;
projections
;
scale
;
calibration
;
framework
Abstract
Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.
Address
Corporate Author
Thesis
Publisher
Place of Publication
Editor
Language
English
Summary Language
Original Title
Series Editor
Series Title
Abbreviated Series Title
Series Volume
Series Issue
Edition
ISSN
0168-1923
ISBN
Medium
Article
Area
Expedition
Conference
Notes
CropM, ft
not
macsur
Approved
no
Call Number
MA @ admin @
Serial
4572
Permanent link to this record
Select All
Deselect All
<<
1
>>
List View
|
Citations
|
Details
Home
CQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help