|
Calanca, P., & Semenov, M. A. (2013). Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database. Theor. Appl. Climatol., 113(3-4), 445–455.
Abstract: We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.
|
|
|
Gabaldón-Leal, C., Lorite, I. J., Mínguez, M. I., Lizaso, J. I., Dosio, A., Sanchez, E., et al. (2015). Strategies for adapting maize to climate change and extreme temperatures in Andalusia, Spain. Clim. Res., 65, 159–173.
Abstract: Climate projections indicate that rising temperatures will affect summer crops in the southern Iberian Peninsula. The aim of this study was to obtain projections of the impacts of rising temperatures, and of higher frequency of extreme events on irrigated maize, and to evaluate some adaptation strategies. The study was conducted at several locations in Andalusia using the CERES-Maize crop model, previously calibrated/validated with local experimental datasets. The simulated climate consisted of projections from regional climate models from the ENSEMBLES project; these were corrected for daily temperature and precipitation with regard to the E-OBS observational dataset. These bias-corrected projections were used with the CERES-Maize model to generate future impacts. Crop model results showed a decrease in maize yield by the end of the 21st century from 6 to 20%, a decrease of up to 25% in irrigation water requirements, and an increase in irrigation water productivity of up to 22%, due to earlier maturity dates and stomatal closure caused by CO2 increase. When adaptation strategies combining earlier sowing dates and cultivar changes were considered, impacts were compensated, and maize yield increased up to 14%, compared with the baseline period (1981-2010), with similar reductions in crop irrigation water requirements. Effects of extreme maximum temperatures rose to 40% at the end of the 21st century, compared with the baseline. Adaptation resulted in an overall reduction in extreme T-max damages in all locations, with the exception of Granada, where losses were limited to 8%.
|
|
|
Montesino-San Martín, M., Olesen, J. E., & Porter, J. R. (2014). A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark. Agricultural and Forest Meteorology, 187, 1–13.
Abstract: Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SIZES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha(-1)) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha(-1). Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha(-1)). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1 degrees C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments of optimal phenotypic characteristics.
|
|
|
Park, S. K., Sungmin, O., & Cassardo, C. (2017). Soil temperature response in Korea to a changing climate using a land surface model. Asia-Pacific Journal of Atmospheric Sciences, 53(4), 457–470.
Abstract: The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme – the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.
|
|
|
Ruiz-Ramos, M., Rodriguez, A., Dosio, A., Goodess, C. M., Harpham, C., Minguez, M. I., et al. (2016). Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century. Clim. Change, 134(1-2), 283–297.
Abstract: Assessment of climate change impacts on crops in regions of complex orography such as the Iberian Peninsula (IP) requires climate model output which is able to describe accurately the observed climate. The high resolution of output provided by Regional Climate Models (RCMs) is expected to be a suitable tool to describe regional and local climatic features, although their simulation results may still present biases. For these reasons, we compared several post-processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability and consequences in improving the results of a crop model to simulate maize growth and development at two IP locations, using this crop as a reference for summer cropping systems in the region. The use of bias-corrected climate runs improved crop phenology and yield simulation overall and reduced the inter-model variability and thus the uncertainty. The number of observational stations underlying each reference observational dataset used to correct the bias affected the correction performance. Although no single technique showed to be the best one, some methods proved to be more adequate for small initial biases, while others were useful when initial biases were so large as to prevent data application for impact studies. An initial evaluation of the climate data, the bias correction/reduction method and the consequences for impact assessment would be needed to design the most robust, reduced uncertainty ensemble for a specific combination of location, crop, and crop management.
|
|