|
Below, T. B., Mutabazi, K. D., Kirschke, D., Franke, C., Sieber, S., Siebert, R., et al. (2012). Can farmers’ adaptation to climate change be explained by socio-economic household-level variables. Glob. Environ. Change, 22(1), 223–235.
Abstract: A better understanding of processes that shape farmers’ adaptation to climate change is critical to identify vulnerable entities and to develop well-targeted adaptation policies. However, it is currently poorly understood what determines farmers’ adaptation and how to measure it. In this study, we develop an activity-based adaptation index (AAI) and explore the relationship between socioeconomic variables and farmers’ adaptation behavior by means of an explanatory factor analysis and a multiple linear regression model using latent variables. The model was tested in six villages situated in two administrative wards in the Morogoro region of Tanzania. The Mlali ward represents a system of relatively high agricultural potential, whereas the Gairo ward represents a system of low agricultural potential. A household survey, a rapid rural appraisal and, a stakeholder workshop were used for data collection. The data were analyzed using factor analysis, multiple linear regression, descriptive statistical methods and qualitative content analysis. The empirical results are discussed in the context of theoretical concepts of adaptation and the sustainable livelihood approach. We found that public investment in rural infrastructure, in the availability and technically efficient use of inputs, in a good education system that provides equal chances for women, and in the strengthening of social capital, agricultural extension and, microcredit services are the best means of improving the adaptation of the farmers from the six villages in Gairo and Mlali. We conclude that the newly developed AAI is a simple but promising way to capture the complexity of adaptation processes that addresses a number of shortcomings of previous index studies.
|
|
|
Bennetzen, E. H., Smith, P., Soussana, J. - F., & Porter, J. R. (2012). Identity-based estimation of greenhouse gas emissions from crop production: case study from Denmark. European Journal of Agronomy, 41, 66–72.
Abstract: In order to feed the world we need innovative thinking on how to increase agricultural production whilst also mitigating climate change. Agriculture and land-use change are responsible for approximately one-third of total anthropogenic greenhouse gas (GHG) emissions but hold potential for climate change mitigation but are only tangentially included in UNFCCC mitigation policies. To get a full estimate of GHG emissions from agricultural crop production both energy-based emissions and land-based emissions need to be accounted for. Furthermore, the major mitigation potential is likely to be indirect reduction of emissions i.e. reducing emissions per unit of agricultural product rather than the absolute emissions per se. Hence the system productivity must be included in the same analysis. This paper presents the Kaya-Porter identity, derived from the Maya identity, as a new way to calculate GHG emissions from agricultural crop production by deconstructing emissions into five elements; the GHG intensity of the energy used for production (kg CO2-eq./MJ), energy intensity of the production (MJ/kg dry matter), areal productivity (kg dry matter/ha), areal land-based GHG emissions (CO2-eq./ha) and area (ha). These separate elements in the identity can be targeted in emissions reduction and mitigation policies and are useful to analyse past and current trends in emissions and to explore future scenarios. Using the Kaya-Porter identity we have performed a case study on Danish crop production and find emissions to have been reduced by 12% from 1992 to 2008, whilst yields per unit area have remained constant. Both land-based emissions and energy-based emissions have decreased, mainly due to a 41% reduction in nitrogen fertilizer use. The initial identity based analysis for crop production presented here needs to be extended to include livestock to reflect the entire agricultural production and food demand sectors, thereby permitting analysis of the trade-offs between animal and plant food production, human dietary preferences and population and resulting GHG emissions. (C) 2012 Elsevier B.V. All rights reserved.
|
|
|
Bojar, W., Knopik, L., Żarski, J., & Kuśmierek-Tomaszewska, R. (2016). Integrated assessment of crop productivity based on the food supply forecasting. Agricultural Economics – Czech, 61(11), 502–510.
Abstract: Climate change scenarios suggest that long periods without rainfall will occur in the future often causing instability of the agricultural products market. The aim of our research was to build a model describing the amount of precipitation and droughts for forecasting crop yields in the future. In this study, we analysed a non-standard mixture of gamma and one point distributions as the model of rainfall. On the basis of the rainfall data, one can estimate parameters of the distribution. Parameter estimators were constructed using a method of maximum likelihood. The obtained rainfall data allow confirming the hypothesis of the adequacy of the proposed rainfall models. Long series of droughts allow one to determine the probabilities of adverse phenomena in agriculture. Based on the model, yields of barley in the years 2030 and 2050 were forecasted which can be used for the assessment of other crops productivity. The results obtained with this approach can be used to predict decreases in agricultural production caused by prospective rainfall shortages. This will enable decision makers to shape effective agricultural policies in order to learn how to balance the food supplies and demands through an appropriate management of stored raw food materials and import/export policies.
|
|
|
Bourgeois, C., Fradj, N. B., & Jayet, P. - A. (2014). How cost-effective is a mixed policy targeting the management of three agricultural N-pollutants. Environmental Modelling & Assessment, 19(5), 389–405.
Abstract: This paper assesses the cost-effectiveness of a mixed policy in attempts to reduce the presence of three nitrogen pollutants: NO (3), N O-2, and NH (3). The policy under study combines a tax on nitrogen input and incentives promoting perennial crops assumed to require low input. We show that the mixed policy improves the cost-effectiveness of regulation with regard to nitrates, whereas no improvement occurs, except for a very low level of subsidy in some cases, for gas pollutants. A quantitative analysis provides an assessment of impacts in terms of land use, farmers’ income, and nitrogen losses throughout France and at river-basin scale.
|
|
|
Christen, B., Kjeldsen, C., Dalgaard, T., & Martin-Ortega, J. (2015). Can fuzzy cognitive mapping help in agricultural policy design and communication? Land Use Policy, 45, 64–75.
Abstract: Highlights •Fuzzy cognitive mapping (FCM)can help to improve agricultural policy design. •We analyse the views on regulation between farmers and non-farmers. •We demonstrate the utility of FCM in disentangling reasons for non-compliance. •Non-compliance is a result of dis-alignment of views rather than unwillingness. •FCM offers a critical, reflexive approach to how a regulatory process is conceived. Agricultural environmental regulation often fails to deliver the desired effects because of farmers adopting the related measures incorrectly or not at all. This is due to several barriers to the uptake of the prescribed environmentally beneficial farm management practices, most of which have been well established by social science research. Yet it is unclear why these barriers remain so difficult to overcome despite numerous and persistent attempts at the design, communication and enforcement of related agricultural policies. This paper examines the potential of fuzzy cognitive mapping (FCM) as a tool to disentangle the underlying reasons of this persistent problem. We present the FCM methodology as adapted to the application in a Scottish case study on how environmental regulation affects farmers and farming practice and what factors are important for compliance or non-compliance with this regulation. The study compares the views of two different stakeholder groups on this matter using FCM network visualizations that were validated by interviews and a workshop session. There was a farmers group representing a typical mix of Scottish farming systems and a non-farmers group, the latter comprising professionals from the fields of design, implementation, administration, consulting on and enforcement of agricultural policies. Between the two groups, the FCM process reveals a very different perception of importance and interaction of factors and strongly suggests that the problem lies in an institutional failure rather than in a simple unwillingness of farmers to obey the rules. FCM allows for a structured process of identifying areas of conflicting perceptions, but also areas where strongly differing groups of stakeholders might be able to gain common ground. In this way, FCM can help to identify anchoring points for targeted policy development and has the potential of becoming a useful tool in agricultural policy design and communication. Our results show the utility of FCM by pointing out how Scottish environmental regulation could be altered to increase compliance with the rules and where the reasons for the identified institutional failure might be sought.
|
|