|
Bellocchi, G., Rivington, M., Matthews, K., & Acutis, M. (2015). Deliberative processes for comprehensive evaluation of agroecological models. A review. Agron. Sust. Developm., 35(2), 589–605.
Abstract: The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
|
|
|
Eyshi Rezaei, E., Siebert, S., & Ewert, F. (2015). Impact of data resolution on heat and drought stress simulated for winter wheat in Germany. European Journal of Agronomy, 65, 69–82.
Abstract: Heat and drought stress can reduce crop yields considerably which is increasingly assessed with crop models for larger areas. Applying these models originally developed for the field scale at large spatial extent typically implies the use of input data with coarse resolution. Little is known about the effect of data resolution on the simulated impact of extreme events like heat and drought on crops. Hence, in this study the effect of input and output data aggregation on simulated heat and drought stress and their impact on yield of winter wheat is systematically analyzed. The crop model SIMPLACE was applied for the period 1980-2011 across Germany at a resolution of 1 km x 1 km. Weather and soil input data and model output data were then aggregated to 10 km x 10 km, 25 km x 25 km, 50 km x 50 km and 100 km x 100 km resolution to analyze the aggregation effect on heat and drought stress and crop yield. We found that aggregation of model input and output data barely influenced the mean and median of heat and drought stress reduction factors and crop yields simulated across Germany. However, data aggregation resulted in less spatial variability of model results and a reduced severity of simulated stress events, particularly for regions with high heterogeneity in weather and soil conditions. Comparisons of simulations at coarse resolution with those at high resolution showed distinct patterns of positive and negative deviations which compensated each other so that aggregation effects for large regions were small for mean or median yields. Therefore, modelling at a resolution of 100 km x 100 km was sufficient to determine mean wheat yield as affected by heat and drought stress for Germany. Further research is required to clarify whether the results can be generalized across crop models differing in structure and detail. Attention should also be given to better understand the effect of data resolution on interactions between heat and drought impacts. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Eza, U., Shtiliyanova, A., Borras, D., Bellocchi, G., Carrère, P., & Martin, R. (2015). An open platform to assess vulnerabilities to climate change: An application to agricultural systems. Ecological Informatics, 30, 389–396.
Abstract: Numerous climate futures are now available from global climate models. Translation of climate data such as precipitation and temperatures into ecologically meaningful outputs for managers and planners is the next frontier. We describe a model-based open platform to assess vulnerabilities of agricultural systems to climate change on pixel-wise data. The platform includes a simulation modeling engine and is suited to work with NetCDF format of input and output files. In a case study covering a region (Auvergne) in the Massif Central of France, the platform is configured to characterize climate (occurrence of arid conditions in historical and projected climate records), soils and human management, and is then used to assess the vulnerability to climate change of grassland productivity (downscaled to a fine scale). We demonstrate how using climate time series, and process-based simulations vulnerabilities can be defined at fine spatial scales relevant to farmers and land managers, and can be incorporated into management frameworks. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Grosz, B., Dechow, R., Gebbert, S., Hoffmann, H., Zhao, G., Constantin, J., et al. (2017). The implication of input data aggregation on up-scaling soil organic carbon changes. Env. Model. Softw., 96, 361–377.
Abstract: In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. (C)2017 Elsevier Ltd. All rights reserved.
|
|
|
Humblot, P., Jayet, P. A., Clerino, P., Leconte-Demarsy, D., Szopa, S., & Castell, J. F. (2013). Assessment of ozone impacts on farming systems: a bio-economic modeling approach applied to the widely diverse French case. Ecol. Econ., 85, 50–58.
Abstract: As a result of anthropogenic activities, ozone is produced in the surface atmosphere, causing direct damage to plants and reducing crop yields. By combining a biophysical crop model with an economic supply model we were able to predict and quantify this effect at a fine spatial resolution. We applied our approach to the very varied French case and showed that ozone has significant productivity and land-use effects. A comparison of moderate and high ozone scenarios for 2030 shows that wheat production may decrease by more than 30% and barley production may increase by more than 14% as surface ozone concentration increases. These variations are due to the direct effect of ozone on yields as well as to modifications in land use caused by a shift toward more ozone-resistant crops: our study predicts a 16% increase in the barley-growing area and an equal decrease in the wheat-growing area. Moreover, mean agricultural gross margin losses can go as high as 2.5% depending on the ozone scenario, and can reach 7% in some particularly affected regions. A rise in ozone concentration was also associated with a reduction of agricultural greenhouse gas emissions of about 2%, as a result of decreased use of nitrogen fertilizers. One noteworthy result was that major impacts, including changes in land use, do not necessarily occur in ozone high concentration zones, and may strongly depend on farm systems and their adaptation capability. Our study suggests that policy makers should view ozone pollution as a major potential threat to agricultural yields. (C) 2012 Elsevier B.V. All rights reserved.
|
|