toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Humblot, P.; Jayet, P.A.; Clerino, P.; Leconte-Demarsy, D.; Szopa, S.; Castell, J.F. doi  openurl
  Title Assessment of ozone impacts on farming systems: a bio-economic modeling approach applied to the widely diverse French case Type Journal Article
  Year 2013 Publication Ecological Economics Abbreviated Journal Ecol. Econ.  
  Volume 85 Issue Pages 50-58  
  Keywords ozone; bio-economic modeling; agricultural production; land use; greenhouse gas; carbon sequestration; abatement costs; climate-change; crops; agriculture; eu; emissions; benefits; level  
  Abstract As a result of anthropogenic activities, ozone is produced in the surface atmosphere, causing direct damage to plants and reducing crop yields. By combining a biophysical crop model with an economic supply model we were able to predict and quantify this effect at a fine spatial resolution. We applied our approach to the very varied French case and showed that ozone has significant productivity and land-use effects. A comparison of moderate and high ozone scenarios for 2030 shows that wheat production may decrease by more than 30% and barley production may increase by more than 14% as surface ozone concentration increases. These variations are due to the direct effect of ozone on yields as well as to modifications in land use caused by a shift toward more ozone-resistant crops: our study predicts a 16% increase in the barley-growing area and an equal decrease in the wheat-growing area. Moreover, mean agricultural gross margin losses can go as high as 2.5% depending on the ozone scenario, and can reach 7% in some particularly affected regions. A rise in ozone concentration was also associated with a reduction of agricultural greenhouse gas emissions of about 2%, as a result of decreased use of nitrogen fertilizers. One noteworthy result was that major impacts, including changes in land use, do not necessarily occur in ozone high concentration zones, and may strongly depend on farm systems and their adaptation capability. Our study suggests that policy makers should view ozone pollution as a major potential threat to agricultural yields. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4604  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: