|
Baldinger, L., Vaillant, J., Zollitsch, W., & Rinne, M. (2015). Making a decision-support system for dairy farmers usable throughout Europe: the challenge of feed evaluation. Advances in Animal Biosciences, 6(01), 3–5.
|
|
|
Bellocchi, G., Rivington, M., Matthews, K., & Acutis, M. (2015). Deliberative processes for comprehensive evaluation of agroecological models. A review. Agron. Sust. Developm., 35(2), 589–605.
Abstract: The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
|
|
|
Caubel, J., García de Cortázar-Atauri, I., Launay, M., de Noblet-Ducoudré, N., Huard, F., Bertuzzi, P., et al. (2015). Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria. Agricultural and Forest Meteorology, 207, 94–106.
Abstract: The cultivation of crops in a given area is highly dependent of climatic conditions. Assessment of how the climate is favorable is highly useful for planners, land managers, farmers and plant breeders who can propose and apply adaptation strategies to improve agricultural potentialities. The aim of this study was to develop an assessment method for crop-climate suitability that was generic enough to be applied to a wide range of issues and crops. The method proposed is based on agroclimatic indicators that are calculated over phenological periods (ecoclimatic indicators). These indicators are highly relevant since they provide accurate information about the effect of climate on particular plant processes and cultural practices that take place during specific phenological periods. Three case studies were performed in order to illustrate the potentialities of the method. They concern annual (maize and wheat) and perennial (grape) crops and focus on the study of climate suitability in terms of the following criteria: ecophysiological, days available to carry out cultural practices, and harvest quality. The analysis of the results revealed both the advantages and limitations of the method. The method is general and flexible enough to be applied to a wide range of issues even if an expert assessment is initially needed to build the analysis framework. The limited number of input data makes it possible to use it to explore future possibilities for agriculture in many areas. The access to intermediate information through elementary ecoclimatic indicators allows users to propose targeted adaptations when climate suitability is not satisfactory.
|
|
|
Crout, N. M. J., Craigon, J., Cox, G. M., Jao, Y., Tarsitano, D., Wood, A. T. A., et al. (2014). An objective approach to model reduction: Application to the Sirius wheat model. Agricultural and Forest Meteorology, 189-190(100), 211–219.
Abstract: An existing simulation model of wheat growth and development, Sirius, was evaluated through a systematic model reduction procedure. The model was automatically manipulated under software control to replace variables within the model structure with constants, individually and in combination. Predictions of the resultant models were compared to growth analysis observations of total biomass, grain yield, and canopy leaf area derived from 9 trials conducted in the UK and New Zealand under optimal, nitrogen limiting and drought conditions. Model performance in predicting these observations was compared in order to evaluate whether individual model variables contributed positively to the overall prediction. Of the 1 1 1 model variables considered 16 were identified as potentially redundant. Areas of the model where there was evidence of redundancy were: (a) translocation of biomass carbon to grain; (b) nitrogen physiology; (c) adjustment of air temperature for various modelled processes; (d) allowance for diurnal variation in temperature; (e) vernalisation (f) soil nitrogen mineralisation (g) soil surface evaporation. It is not suggested that these are not important processes in real crops, rather, that their representation in the model cannot be justified in the context of the analysis. The approach described is analogous to a detailed model inter-comparison although it would be better described as a model intra-comparison as it is based on the comparison of many simplified forms of the same model. The approach provides automation to increase the efficiency of the evaluation and a systematic means of increasing the rigour of the evaluation.
|
|
|
Ma, S., Lardy, R., Graux, A. - I., Ben Touhami, H., Klumpp, K., Martin, R., et al. (2015). Regional-scale analysis of carbon and water cycles on managed grassland systems. Env. Model. Softw., 72, 356–371.
Abstract: Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213 g C m(-2) yr(-1), which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185 g C m(-2) yr(-1) on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006 g C m(-2) yr(-1), respectively, in agreement with observed average GPP (1230 g C m(-2) yr(-1)) and RECO (1046 g C m(-2) yr(-1)). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was similar to 5-16 g C week(-1) across the study sites, while the goodness of fit (R-2) was similar to 0.4-0.9. For evapotranspiration (ET), the average value of simulated ET (415 mmyr(-1)) for all sites and years is close to the average value of the observed ET (451 mm yr(-1)) by flux towers (on a weekly basis, RMSE similar to 2-8 mm week(-1); R-2 = 0.3-0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system.
|
|