|
Baranowski, P., Krzyszczak, J., Slawinski, C., Hoffmann, H., Kozyra, J., Nieróbca, A., et al. (2015). Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res., 65, 39–52.
Abstract: Agro-meteorological quantities are often in the form of time series, and knowledge about their temporal scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and nonstationarities. The objective of this study was to characterise scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological quantities through multifractal detrended fluctuation analysis (MFDFA). For this purpose, MFDFA was performedwith 11 322 measured time series (31 yr) of daily air temperature, wind velocity, relative air humidity, global radiation and precipitation from stations located in Finland, Germany, Poland and Spain. The empirical singularity spectra indicated their multifractal structure. The richness of the studied multifractals was evaluated by the width of their spectrum, indicating considerable differences in dynamics and development. In log-log plots of the cumulative distributions of all meteorological parameters the linear functions prevailed for high values of the response, indicating that these distributions were consistent with power-law asymptotic behaviour. Additionally, we investigated the type of multifractality that underlies the q-dependence of the generalized Hurst exponent by analysing the corresponding shuffled and surrogate time series. For most of the studied meteorological parameters, the multifractality is due to different long-range correlations for small and large fluctuations. Only for precipitation does the multifractality result mainly from broad probability function. This feature may be especially valuable for assessing the effect of change in climate dynamics.
|
|
|
Conradt, T., Gornott, C., & Wechsung, F. (2016). Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis. Agricultural and Forest Meteorology, 216, 68–81.
Abstract: Regional agricultural yield assessments allowing for weather effect quantifications are a valuable basis for deriving scenarios of climate change effects and developing adaptation strategies. Assessing weather effects by statistical methods is a classical approach, but for obtaining robust results many details deserve attention and require individual decisions as is demonstrated in this paper. We evaluated regression models for annual yield changes of winter wheat and silage maize in more than 300 German counties and revised them to increase their predictive power. A major effort of this study was, however, aggregating separately estimated time series models (STSM) into panel data models (PDM) based on cluster analyses. The cluster analyses were based on the per-county estimates of STSM parameters. The original STSM formulations (adopted from a parallel study) contained also the non-meteorological input variables acreage and fertilizer price. The models were revised to use only weather variables as estimation basis. These consisted of time aggregates of radiation, precipitation, temperature, and potential evapotranspiration. Altering the input variables generally increased the predictive power of the models as did their clustering into PDM. For each crop, five alternative clusterings were produced by three different methods, and similarities between their spatial structures seem to confirm the existence of objective clusters about common model parameters. Observed smooth transitions of STSM parameter values in space suggest, however, spatial autocorrelation effects that could also be modeled explicitly. Both clustering and autocorrelation approaches can effectively reduce the noise in parameter estimation through targeted aggregation of input data. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Ghaley, B. B., Vesterdal, L., & Porter, J. R. (2014). Quantification and valuation of ecosystem services in diverse production systems for informed decision-making. Environmental Science & Policy, 39, 139–149.
Abstract: The empirical evidence of decline in ecosystem services (ES) over the last century has reinforced the call for ES quantification, monitoring and valuation. Usually, only provisioning ES are marketable and accounted for, whereas regulating, supporting and cultural ES are typically non-marketable and overlooked in connection with land-use or management decisions. The objective of this study was to quantify and value total ES (marketable and non-marketable) of diverse production systems and management intensities in Denmark to provide a basis for decisions based on economic values. The production systems were conventional wheat (Cwheat), a combined food and energy (CFE) production system and beech forest. Marketable (provisioning ES) and non-marketable ES (supporting, regulating and cultural) ES were quantified by dedicated on-site field measurements supplemented by literature data. The value of total ES was highest in CFE (US$ 3142 ha(-1) yr(-1)) followed by Cwheat (US$ 2767 ha (1) yr(-1)) and beech forest (US$ 2328 ha(-1) yr(-1)). As the production system shifted from Cwheat – CFE-beech, the marketable ES share decreased from 88% to 75% in CFE and 55% in beech whereas the non-marketable ES share increased to 12%, 25% and 45% of total ES in Cwheat, CFE and beech respectively, demonstrating production system and management effects on ES values. Total ES valuation, disintegrated into marketable and non-marketable share is a potential way forward to value ES and `tune’ our production systems for enhanced ES provision. Such monetary valuation can be used by policy makers and land managers as a tool to assess ES value and monitor the sustained flow of ES. The application of ES-based valuation for land management can enhance ES provision for maintaining the productive capacity of the land without depending on the external fossil-based fertilizer and chemical input. (C) 2013 Elsevier Ltd. All rights reserved.
|
|
|
Kim, Y., Berger, S., Kettering, J., Tenhunen, J., Haas, E., & Kiese, R. (2014). Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC. Ecol. Res., 29(3), 441–454.
Abstract: Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465-765 kg N ha(-1) year(-1)). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha(-1) year(-1) was the dominant reason for overall low nitrogen use efficiency (32-43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha(-1) year(-1), thus contributing an equal amount to total field emissions of about 5 kg N ha(-1) year(-1). Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50-60 %.
|
|
|
Luo, K., Tao, F., Moiwo, J. P., & Xiao, D. (2016). Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades. Scientific Reports, 6, 33704.
Abstract: The contributions of climate and land use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest China were quantified using detailed climatic, land use and hydrological data, along with the process-based SWAT (Soil and Water Assessment Tool) hydrological model. The results showed that for the 1980s, the changes in the basin hydrological change were due more to LUCC (74.5%) than to climate change (21.3%). While LUCC accounted for 60.7% of the changes in the basin hydrological change in the 1990s, climate change explained 57.3% of that change. For the 2000s, climate change contributed 57.7% to hydrological change in the HRB and LUCC contributed to the remaining 42.0%. Spatially, climate had the largest effect on the hydrology in the upstream region of HRB, contributing 55.8%, 61.0% and 92.7% in the 1980s, 1990s and 2000s, respectively. LUCC had the largest effect on the hydrology in the middle-stream region of HRB, contributing 92.3%, 79.4% and 92.8% in the 1980s, 1990s and 2000s, respectively. Interestingly, the contribution of LUCC to hydrological change in the upstream, middle-stream and downstream regions and the entire HRB declined continually over the past 30 years. This was the complete reverse (a sharp increase) of the contribution of climate change to hydrological change in HRB.
|
|