|
Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Popp, A., & Muller, C. (2014). Forecasting technological change in agriculture-An endogenous implementation in a global, and use model. Technological Forecasting and Social Change, 81, 236–249.
Abstract: Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 029 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (”Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995-2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change. (C) 2013 Elsevier Inc. All rights reserved.
|
|
|
Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Popp, A., & Müller, C. (2014). Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technological Forecasting and Social Change, 81, 236–249.
Abstract: ► Endogenous technological change in an economic land use model ► Estimation of yield elasticity with respect to investments in technological change ► Projections of future agricultural productivity rates ► Validation with observed data and historic trends ► Trade-off between required technological change and forest protection objectives Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 0.29 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (“Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995–2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change.
|
|
|
Müller, C., & Robertson, R. D. (2014). Projecting future crop productivity for global economic modeling. Agric. Econ., 45(1), 37–50.
Abstract: Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10-38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.
|
|
|
Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., et al. (2014). Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl. Acad. Sci. U. S. A., 111(9), 3274–3279.
Abstract: Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.
|
|
|
Schmitz, C., Kreidenweis, U., Lotze-Campen, H., Popp, A., Krause, M., Dietrich, J. P., et al. (2014). Agricultural trade and tropical deforestation: interactions and related policy options. Reg Environ Change, 15(8), 1757–1772.
Abstract: The extensive clearing of tropical forests throughout past decades has been partly assigned to increased trade in agricultural goods. Since further trade liberalisation can be expected, remaining rainforests are likely to face additional threats with negative implications for climate mitigation and the local environment. We apply a spatially explicit economic land-use model coupled to a biophysical vegetation model to examine linkages and associated policies between trade and tropical deforestation in the future. Results indicate that further trade liberalisation leads to an expansion of deforestation in Amazonia due to comparative advantages of agriculture in South America. Globally, between 30 and 60 million ha (5-10 %) of tropical rainforests would be cleared additionally, leading to 20-40 Gt additional emissions by 2050. By applying different forest protection policies, those values could be reduced substantially. Most effective would be the inclusion of avoided deforestation into a global emissions trading scheme. Carbon prices corresponding to the concentration target of 550 ppm would prevent deforestation after 2020. Investing in agricultural productivity reduces pressure on tropical forests without the necessity of direct protection. In general, additional trade-induced demand from developed and emerging countries should be compensated by international efforts to protect natural resources in tropical regions.
|
|