toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Heinschink, K.; Sinabell, F.; Url, T. url  openurl
  Title Elements of an Index-based Margin Insurance. An Application to Wheat Production in Austria Type Report
  Year 2017 Publication (down) WIFO Working Papers Abbreviated Journal  
  Volume 536 Issue Pages 16  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 5016  
Permanent link to this record
 

 
Author Ruiu, L.M.; Maurizi, S.; Sassu, S.; Seddaiu, G.; Zuin, O.; Blackmore, C.; Roggero, P.P. url  doi
openurl 
  Title Re-Staging La Rasgioni: lessons learned from transforming a traditional form of conflict resolution to engage stakeholders in agricultural water governance Type Journal Article
  Year 2017 Publication (down) Water Abbreviated Journal Water  
  Volume 9 Issue 4 Pages 297  
  Keywords co-researching; dairy farming; ecosystem perception; systemic governance; governance learning; irrigation; knowledge co-production; nitrate pollution; social learning; stakeholders; theatre  
  Abstract This paper presents an informal process inspired by a public practice of conflict mediation used until a few decades ago in Gallura (NE Sardinia, Italy), named La Rasgioni (The Reason). The aim is twofold: (i) to introduce an innovative method that translates the complexity of water-related conflicts into a “dialogical tool”, aimed at enhancing social learning by adopting theatrical techniques; and (ii) to report the outcomes that emerged from the application of this method in Arborea, the main dairy cattle district and the only nitrate-vulnerable zone in Sardinia, to mediate contrasting positions between local entrepreneurs and representatives of the relevant institutions. We discuss our results in the light of four pillars, adopted as research lenses in the International research Project CADWAGO (Climate Change Adaptation and Water Governance), which consider the specific “social–ecological” components of the Arborea system, climate change adaptability in water governance institutions and organizations, systemic governance (relational) practices, and governance learning. The combination of the four CADWAGO pillars and La Rasgioni created an innovative dialogical space that enabled stakeholders and researchers to collectively identify barriers and opportunities for effective governance practices. Potential wider implications and applications of La Rasgioni process are also discussed in the paper.  
  Address 2017-04-24  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved yes  
  Call Number MA @ admin @ Serial 4944  
Permanent link to this record
 

 
Author Gobin, A.; Kersebaum, K.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.; Deelstra, J.; Lalić, B.; Nejedlik, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Şaylan, L.; Stričevic, R.; Vučetić, V.; Zoumides, C. url  doi
openurl 
  Title Variability in the Water Footprint of Arable Crop Production across European Regions Type Journal Article
  Year 2017 Publication (down) Water Abbreviated Journal Water  
  Volume 9 Issue 2 Pages 93  
  Keywords  
  Abstract Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R² = 0.64–0.80; d = 0.91–0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (c̅v̅ = 45%) and to a lesser extent to variability in crop water use (c̅v̅ = 21%). The WF variability between countries (c̅v̅ = 14%) is lower than the variability between seasons (c̅v̅ = 22%) and between crops (c̅v̅ = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4988  
Permanent link to this record
 

 
Author Doro, L.; Jones, C.; Williams, J.R.; Norfleet, M.L.; Izaurralde, R.C.; Wang, X.; Jeong, J. doi  openurl
  Title The Variable Saturation Hydraulic Conductivity Method for Improving Soil Water Content Simulation in EPIC and APEX Models Type Journal Article
  Year 2017 Publication (down) Vadose Zone Journal Abbreviated Journal Vadose Zone Journal  
  Volume 16 Issue 13 Pages  
  Keywords Conservation Effects Assessment; Runoff Simulation; Unsaturated Soils; United-States; Porous-Media; Moisture; Flow; Productivity; Transport; Denitrification  
  Abstract Soil water percolation is a key process in the life cycle of water in fields, watersheds, and river basins. The Environmental Policy Integrated Climate (EPIC) and the Agricultural Policy/Environmental eXtender (APEX) are continuous models developed for evaluating the environmental effects of agricultural management. Traditionally, these models have simulated soil water percolation processes using a tipping-bucket approach, with the rate of flow limited by the saturated hydraulic conductivity. This simple approach often leads to inaccuracy in simulating elevated soil water conditions where soil water content (SWC) levels may remain above field capacity under prolonged wet weather periods or limited drainage. To overcome this deficiency, a new sub-model, the variable saturation hydraulic conductivity (VSHC) method, was developed for simulating soil water percolation processes using a nonlinear equation to estimate the effective hydraulic conductivity as a function of the SWC and soil properties. The VSHC method was evaluated at three sites in the United States and two sites in Europe. In addition, a numerical solution of the Richards equation was used as a benchmark for SWC comparison. Results show that the VSHC method substantially improves the accuracy of the SWC simulation in long-term simulations, particularly during wet periods. At the watershed scale, results on the Riesel Y2 watershed indicate that the VSHC method enhances model performance in the high-flow regime of channel peak flows because of the improved estimation of SWC, which implies that the improved SWC simulation at the field scale is beneficial to hydrologic modeling at the watershed scale.  
  Address 2018-09-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-1663 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5208  
Permanent link to this record
 

 
Author Zhai, R.; Tao, F. doi  openurl
  Title Contributions of climate change and human activities to runoff change in seven typical catchments across China Type Journal Article
  Year 2017 Publication (down) Science of the Total Environment Abbreviated Journal Sci. Tot. Environ.  
  Volume 605 Issue Pages 219-229  
  Keywords Catchments; Detection; Attribution; Runoff; VIC; Water resource; Weihe River-Basin; Hydrologic Response; Temporal-Changes; Loess Plateau; United-States; Yellow-River; Streamflow; Impacts; Variability; Model  
  Abstract Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%,-66%,-50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%,- 68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%,-67%,-94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed. (C) 2017 Elsevier B.V. All rights reserved.  
  Address 2017-09-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5177  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: