toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Molina-Herrera, S.; Haas, E.; Grote, R.; Kiese, R.; Klatt, S.; Kraus, D.; Kampffmeyer, T.; Friedrich, R.; Andreae, H.; Loubet, B.; Ammann, C.; Horvath, L.; Larsen, K.; Gruening, C.; Frumau, A.; Butterbach-Bahl, K. doi  openurl
  Title Importance of soil NO emissions for the total atmospheric NOX budget of Saxony, Germany Type Journal Article
  Year 2017 Publication Atmospheric Environment Abbreviated Journal Atm. Environ.  
  Volume 152 Issue Pages 61-76  
  Keywords LandscapeDNDC; Model evaluation; NOX emissions; Soil emissions; Distributed modeling; Emission inventory; Nitric-Oxide Emissions; European Forest Soils; Nitrous-Oxide; N2O; Emissions; Agricultural Soils; Gas Emissions; Organic Soil; Trace Gases; Model; Fluxes  
  Abstract Soils are a significant source for the secondary greenhouse gas NO and assumed to be a significant source of tropospheric NOx in rural areas. Here we tested the LandscapeDNDC model for its capability to simulate magnitudes and dynamics of soil NO emissions for 22 sites differing in land use (arable, grassland and forest) and edaphic as well as climatic conditions. Overall, LandscapeDNDC simulated mean soil NO emissions agreed well with observations (r(2) = 0.82). However, simulated day to day variations of NO did only agree weakly with high temporal resolution measurements, though agreement between simulations and measurements significantly increased if data were aggregated to weekly, monthly and seasonal time scales. The model reproduced NO emissions from high and low emitting sites, and responded to fertilization (mineral and organic) events with pulse emissions. After evaluation, we linked the LandscapeDNDC model to a GIS database holding spatially explicit data on climate, land use, soil and management to quantify the contribution of soil biogenic NO emissions to the total NOx budget for the State of Saxony, Germany. Our calculations show that soils of both agricultural and forest systems are significant sources and contribute to about 8% (uncertainty range: 6 -13%) to the total annual tropospheric NO, budget for Saxony. However, the contributions of soil NO emission to total tropospheric NO, showed a high spatial variability and in some rural regions such as the Ore Mts., simulated soil NO emissions were by far more important than anthropogenic sources. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address 2017-04-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4943  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: