toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Höhn, J.; Rötter, R.P. url  doi
openurl 
  Title Impact of global warming on European cereal production Type Journal Article
  Year 2014 Publication CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources Abbreviated Journal CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources  
  Volume 9 Issue 022 Pages 1-15  
  Keywords Climate change; Food security; Uncertainty; Wheat; Maize; Barley  
  Abstract This review examines relevant impact assessments identified by a literature search from 1991to date. A bibliographic search was applied to the CAB Abstracts database with a given searchstring. Resultant papers were checked for relevance, based on expert judgment. This yielded 91 papers, which were subjected to further analysis. Firstly, publication intensity over time and distribution by geographic location and cereal crop were examined. Next, for a given crop, the assessments and their outcomes were grouped by type and number of the change variables considered – that is, effects of climate change only, elevated CO 2 and technological progress(improved breeds, management). Finally, separately for individual countries/subregions and Europe as a whole, we examined whether and to what extent study results have changed over time, for example become more positive/negative. Based on our sample, we found that publication intensity increased exponentially during thelast 4 years, the majority of studies are Europe-wide, but some concentrated on a few countries(Italy, Spain and UK), whereby studies on wheat are clearly most popular. Taking the factor of technological progress into account has an overruling influence on results. Finally, over time, projected yield impacts have become more negative. This is in line with finding from global analyses, as reflected by the most recent comparison of agricultural impact chapters, of the 4thand 5th Assessment Reports of Intergovernmental Panel on Climate Change, Working Group II.In the future, there is particular need to consider impacts under various incremental and transformational adaptation measures in more depth (e.g. their interconnections across scales)and with more breadth (e.g. anticipated new breeds). Follow-up reviews should also examine how projected impacts are changing with the new climate scenario data sets (CMIP5) and with improved impact models and assessment approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-8848 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4524  
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions Type Journal Article
  Year 2015 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 16 Issue 4 Pages 361-384  
  Keywords nitrogen management; climatic variability; lars-wg weather generator; stics soil-crop model; pearson system; probability risk assessment; crop model stics; fertilizer nitrogen; generic model; wheat yield; maize; simulation; skewness; field; agriculture; scenarios  
  Abstract At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque-Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha(-1)), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of -1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha(-1)) of the distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4519  
Permanent link to this record
 

 
Author Sanz-Cobena, A.; Lassaletta, L.; Gamier, J.; Smith, P.; Sanz-Cobena, A.; Lassaletta, L.; Gamier, J.; Smith, P. doi  openurl
  Title Mitigation and quantification of greenhouse gas emissions in Mediterranean cropping systems Type Journal Article
  Year 2017 Publication Agriculture, Ecosystems & Environment Abbreviated Journal Agriculture, Ecosystems & Environment  
  Volume 238 Issue Pages 1-4  
  Keywords Climate-Change; Soil Carbon  
  Abstract  
  Address 2017-03-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes (up) CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4940  
Permanent link to this record
 

 
Author Rusu, T.; Moraru, P.; Coste, C.; Cacovean, H.; Chetan, F.; Chetan, C. url  openurl
  Title Impact of climate change on climatic indicators in Transylvanian Plain, Romania Type Journal Article
  Year 2014 Publication Journal of Food, Agriculture and Environment Abbreviated Journal Journal of Food, Agriculture and Environment  
  Volume 12 Issue 1 Pages 469-473  
  Keywords Climate change; climatic indicators; Transylvanian plain  
  Abstract The condition of land degradation in Transylvanian Plain and its effects, being the result of local extreme physical-geographical conditions, is susceptible to degradation (evidenced by the erodibility index), which overlaps the extreme climatic conditions. Thermal and hydric regime monitoring is necessary in order to identify and implement measures of adaptation to the impacts of climate change. Soil moisture and temperature regimes were evaluated using a set of 20 data logging stations positioned throughout the plain. Each station stores electronic data of ground temperature at 3 depths (10, 30, 50 cm), the humidity at the depth of 10 cm, the air temperature (at 1 m) and precipitations. Climate change in the past few years has significantly altered the climatic indicators of the Transylvanian Plain. Precipitations, although deficient in terms of annual amounts, through their regime, have a negative influence on the plant carpet. Pluvial aggressiveness index reveals, for the research period, a first peak of pluvial aggressiveness during the months of February-April, then in July and in autumn, the months of October-November. This requires special measures for soil conservation, both in autumn and early spring, soil tillage measures being recommended, which ensure the presence of plant debris and vegetation in early spring but especially in summer and autumn. Climatic indicators determined for the period 2008 – 2012 point out, in Transylvanian Plain, a semi-arid Mediterranean climate through the rain factor Lang, respectively semi-arid (in the South) – semi-wet (in the North) according to the De Martonne index. This climatic characterization requires special technological measures for soil conservation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4638  
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Leemans, V.; Destain, M.-F. url  doi
openurl 
  Title Bayesian methods for predicting LAI and soil water content Type Journal Article
  Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 15 Issue 2 Pages 184-201  
  Keywords crop model; bayes; data assimilation; extended kalman filtering; particle filtering; variational filtering; leaf-area index; parameter-estimation; crop models; moisture; instruments; management; sensors; state  
  Abstract LAI of winter wheat (Triticum aestivum L.) and soil water content of the topsoil (200 mm) and of the subsoil (500 mm) were considered as state variables of a dynamic soil-crop system. This system was assumed to progress according to a Bayesian probabilistic state space model, in which real values of LAI and soil water content were daily introduced in order to correct the model trajectory and reach better future evolution. The chosen crop model was mini STICS which can reduce the computing and execution times while ensuring the robustness of data processing and estimation. To predict simultaneously state variables and model parameters in this non-linear environment, three techniques were used: extended Kalman filtering (EKF), particle filtering (PF), and variational filtering (VF). The significantly improved performance of the VF method when compared to EKF and PF is demonstrated. The variational filter has a low computational complexity and the convergence speed of states and parameters estimation can be adjusted independently. Detailed case studies demonstrated that the root mean square error of the three estimated states (LAI and soil water content of two soil layers) was smaller and that the convergence of all considered parameters was ensured when using VF. Assimilating measurements in a crop model allows accurate prediction of LAI and soil water content at a local scale. As these biophysical properties are key parameters in the crop-plant system characterization, the system has the potential to be used in precision farming to aid farmers and decision makers in developing strategies for site-specific management of inputs, such as fertilizers and water irrigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4629  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: