toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Challinor, A.J.; Smith, M.S.; Thornton, P. url  doi
openurl 
  Title Use of agro-climate ensembles for quantifying uncertainty and informing adaptation Type Journal Article
  Year (down) 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 170 Issue Pages 2-7  
  Keywords Climate models; Crop models; Ensembles; Climate change; Adaptation; Food security; Climate variability; Uncertainty; Crop yield  
  Abstract ► Introduces the special issue on Agricultural prediction using climate model ensembles. ► Discuss remaining scientific challenges. ► Develops distinction between projection- and utility-based ensemble modelling. ► Recommendations made RE modelling and the analysis and reporting of uncertainty. Significant progress has been made in the use of ensemble agricultural and climate modelling, and observed data, to project future productivity and to develop adaptation options. An increasing number of agricultural models are designed specifically for use with climate ensembles, and improved methods to quantify uncertainty in both climate and agriculture have been developed. Whilst crop–climate relationships are still the most common agricultural study of this sort, on-farm management, hydrology, pests, diseases and livestock are now also examined. This paper introduces all of these areas of progress, with more detail being found in the subsequent papers in the special issue. Remaining scientific challenges are discussed, and a distinction is developed between projection- and utility-based approaches to agro-climate ensemble modelling. Recommendations are made regarding the manner in which uncertainty is analysed and reported, and the way in which models and data are used to make inferences regarding the future. A key underlying principle is the use of models as tools from which information is extracted, rather than as competing attempts to represent reality.  
  Address 2015-09-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4690  
Permanent link to this record
 

 
Author Angulo, C.; Rötter, R.; Lock, R.; Enders, A.; Fronzek, S.; Ewert, F. url  doi
openurl 
  Title Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe Type Journal Article
  Year (down) 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 170 Issue Pages 32-46  
  Keywords regional crop modelling; calibration; impact assessment; yield variability; simulation; simulation-models; elevated CO2; integrated assessment; bayesian calibration; atmospheric CO2; growth simulation; use efficiency; spring wheat; winter-wheat; large-area  
  Abstract Process-based crop simulation models are increasingly used in regional climate change impact studies, but little is known about the implications of different calibration strategies on simulated yields. This study aims to assess the importance of region-specific calibration of five important field crops (winter wheat, winter barley, potato, sugar beet and maize) across 25 member countries of the European Union (EU25). We examine three calibration strategies and their implications on spatial and temporal yield variability in response to climate change: (i) calculation of phenology parameters only, (ii) consideration of both phenology calibration and a yield correction factor and (iii) calibration of phenology and selected growth processes. The analysis is conducted for 533 climate zones, considering 24 years of observed yield data (1983-2006). The best performing strategy is used to estimate the impacts of climate change, increasing CO2 concentration and technology development on yields for the five crops across EU25, using seven climate change scenarios for the period 2041-2064. Simulations and calibrations are performed with the crop model LINTUL2 combined with a calibration routine implemented in the modelling interface LINTUL-FAST. The results show that yield simulations improve if growth parameters are considered in the calibration for individual regions (strategy 3); e.g. RMSE values for simulated winter wheat yield are 2.36, 1.10 and 0.70 Mg ha(-1) for calibration strategies 1, 2 and 3, respectively. The calibration strategy did not only affect the model simulations under reference climate but also the extent of the simulated climate change impacts. Applying the calibrated model for impact assessment revealed that climatic change alone will reduce crop yields. Consideration of the effects of increasing CO2 concentration and technology development resulted in yield increases for all crops except maize (i.e. the negative effects of climate change were outbalanced by the positive effects of CO2 and technology change), with considerable differences between scenarios and regions. Our simulations also suggest some increase in yield variability due to climate change which, however, is less pronounced than the differences among scenarios which are particularly large when the effects of CO2 concentration and technology development are considered. Our results stress the need for region-specific calibration of crop models used for Europe-wide assessments. Limitations of the considered strategies are discussed. We recommend that future work should focus on obtaining more comprehensive, high quality data with a finer resolution allowing application of improved strategies for model calibration that better account for spatial differences and changes over time in the growth and development parameters used in crop models. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4597  
Permanent link to this record
 

 
Author Eitzinger, J.; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rotter, R.; Kersebaum, K.C.; Olesen, J.E.; Patil, R.H.; Saylan, L.; Caldag, B.; Caylak, O. doi  openurl
  Title Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria Type Journal Article
  Year (down) 2013 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 151 Issue 6 Pages 813-835  
  Keywords simulate yield response; climate-change scenarios; central-europe; nitrogen dynamics; high-temperature; future climate; elevated co2; soil; growth; variability  
  Abstract The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4601  
Permanent link to this record
 

 
Author Waha, K.; Müller, C.; Rolinski, S. url  doi
openurl 
  Title Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century Type Journal Article
  Year (down) 2013 Publication Global and Planetary Change Abbreviated Journal Global and Planetary Change  
  Volume 106 Issue Pages 1-12  
  Keywords climate change; wet season; water stress; temperature stress; hierarchical cluster analysis; global vegetation model; climate-change; southern africa; east-africa; part i; food; heat; agriculture; variability; impacts  
  Abstract Maize (Zea mays L) is one of the most important food crops and very common in all parts of sub-Saharan Africa. In 2010 53 million tons of maize were produced in sub-Saharan Africa on about one third of the total harvested cropland area (similar to 33 million ha). Our aim is to identify the limiting agroclimatic variable for maize growth and development in sub-Saharan Africa by analyzing the separated and combined effects of temperature and precipitation. Under changing climate, both climate variables are projected to change severely, and their impacts on crop yields are frequently assessed using process-based crop models. However it is often unclear which agroclimatic variable will have the strongest influence on crop growth and development under climate change and previous studies disagree over this question. We create synthetic climate data in order to study the effect of large changes in the length of the wet season and the amount of precipitation during the wet season both separately and in combination with changes in temperature. The dynamic global vegetation model for managed land LPJmL is used to simulate maize yields under current and future climatic conditions for the two 10-year periods 2056-2065 and 2081-2090 for three climate scenarios for the A1b emission scenario but without considering the beneficial CO2 fertilization effect. The importance of temperature and precipitation effects on maize yields varies spatially and we identify four groups of crop yield changes: regions with strong negative effects resulting from climate change (<-33% yield change), regions with moderate (-33% to -10% yield change) or slight negative effects (-10% to +6% yield change), and regions with positive effects arising from climate change mainly in currently temperature-limited high altitudes (>+6% yield change). In the first three groups temperature increases lead to maize yield reductions of 3 to 20%, with the exception of mountainous and thus cooler regions in South and East Africa. A reduction of the wet season precipitation causes decreases in maize yield of at least 30% and prevails over the effect of increased temperatures in southern parts of Mozambique and Zambia, the Sahel and parts of eastern Africa in the two projection periods. This knowledge about the limiting abiotic stress factor in each region will help to prioritize future research needs in modeling of agricultural systems as well as in drought and heat stress breeding programs and to identify adaption options in agricultural development projects. On the other hand the study enhances the understanding of temperature and water stress effects on crop yields in a global vegetation model in order to identify future research and model development needs. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8181 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4508  
Permanent link to this record
 

 
Author Strauss, F.; Moltchanova, E.; Schmid, E. url  doi
openurl 
  Title Spatially explicit modeling of long-term drought impacts on crop production in Austria Type Journal Article
  Year (down) 2013 Publication American Journal of Climate Change Abbreviated Journal American Journal of Climate Change  
  Volume 2 Issue 3 Pages 1-11  
  Keywords Long-Term Drought Modeling; Dry Day Index; Biophysical Impacts; Spatial Variability; EPIC; Austria  
  Abstract Droughts have serious and widespread impacts on crop production with substantial economic losses. The frequency and severity of drought events may increase in the future due to climate change. We have developed three meteorological drought scenarios for Austria in the period 2008-2040. The scenarios are defined based on a dry day index which is combined with bootstrapping from an observed daily weather dataset of the period 1975-2007. The severity of long-term drought scenarios is characterized by lower annual and seasonal precipitation amounts as well as more sig- nificant temperature increases compared to the observations. The long-term impacts of the drought scenarios on Aus- trian crop production have been analyzed with the biophysical process model EPIC (Environmental Policy Integrated Climate). Our simulation outputs show that—for areas with historical mean annual precipitation sums below 850 mm— already slight increases in dryness result in significantly lower crop yields i.e. depending on the drought severity, be- tween 0.6% and 0.9% decreases in mean annual dry matter crop yields per 1.0% decrease in mean annual precipitation sums. The EPIC results of more severe droughts show that spring and summer precipitation may become a limiting factor in crop production even in regions with historical abundant precipitation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-9495 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4507  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: