toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vilvert, E.; Lana, M.; Zander, P.; Sieber, S. doi  openurl
  Title (down) Multi-model approach for assessing the sunflower food value chain in Tanzania Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 103-110  
  Keywords Sunflower; Food value chain; Modelling; Tanzania; Food security; Systems Simulation; Crop Model; Agricultural Systems; Farming Systems; Yield Response; Land-Use; Water; Aquacrop; Security; Stics  
  Abstract Sunflower is one of the major oilseeds produced in Tanzania, but due to insufficient domestic production more than half of the country’s demand is imported. The improvement of the sunflower food value chain (FVC) understanding is important to ensure an increase in the production, availability, and quality of edible oil. In order to analyse causes and propose solutions to increase the production of sunflower oil, a conceptual framework that proposes the combined use of different models to provide insights about the sunflower FVC was developed. This research focus on the identification of agricultural models that can provide a better understanding of the sunflower FVC in Tanzania, especially within the context of food security improvement. A FVC scheme was designed considering the main steps of sunflower production. Thereafter, relevant models were selected and placed along each step of the FVC. As result, the sunflower FVC model in Tanzania is organized in five steps, namely (1) natural resources; (2) crop production; (3) oil processing; (4) trade; and (5) consumption. Step 1 uses environmental indicators to analyse soil parameters on soil-water models (SWAT, LPJmL, APSIM or CroSyst), with outputs providing data for step 2 of the FVC. In the production step, data from step 1, together with other inputs, is used to run crop models (DSSAT, HERMES, MONICA, STICS, EPIC or AquaCrop) that analyse the impact on sunflower yields. Thereafter, outputs from crop models serve as input for bio-economic farm models (FSSIM or MODAM) to estimate production costs and farm income by optimizing resource allocation planning for step 2. In addition, outputs from crop models are used as inputs for macro-economic models (GTAP, MAGNET or MagPie) by adjusting supply functions and environmental impacts within steps 3, 4, and 5. These models simulate supply and demand, including the processing of products to determine prices and trade volumes at market equilibrium. In turn, these data is used by bio-economic farm models to assess sunflower returns for different farm types and agro-environmental conditions. Due to the large variety of models, it is possible to assess significant parts of the FVC, reducing the need to make assumptions, while improving the understanding of the FVC.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5187  
Permanent link to this record
 

 
Author Ferrise, R.; Toscano, P.; Pasqui, M.; Moriondo, M.; Primicerio, J.; Semenov, M.A.; Bindi, M. url  doi
openurl 
  Title (down) Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 7-21  
  Keywords yield predictions; seasonal forecasts; analogue forecasts; stochastic weather generator; empirical forecasting models; durum wheat; crop modelling; mediterranean basin; general-circulation model; scale climate indexes; crop yield; grain-yield; forecasts; simulation; region; precipitation; australia; europe  
  Abstract Uncertainty in weather conditions for the forthcoming growing season influences farmers’ decisions, based on their experience of the past climate, regarding the reduction of agricultural risk. Early within-season predictions of grain yield can represent a great opportunity for farmers to improve their management decisions and potentially increase yield and reduce potential risk. This study assessed 3 methods of within-season predictions of durum wheat yield at 10 sites across the Mediterranean Basin. To assess the value of within-season predictions, the model SiriusQuality2 was used to calculate wheat yields over a 9 yr period. Initially, the model was run with observed daily weather to obtain the reference yields. Then, yield predictions were calculated at a monthly time step, starting from 6 mo before harvest, by feeding the model with observed weather from the beginning of the growing season until a specific date and then with synthetic weather constructed using the 3 methods, historical, analogue or empirical, until the end of the growing season. The results showed that it is possible to predict durum wheat yield over the Mediterranean Basin with an accuracy of normalized root means squared error of <20%, from 5 to 6 mo earlier for the historical and empirical methods and 3 mo earlier for the analogue method. Overall, the historical method performed better than the others. Nonetheless, the analogue and empirical methods provided better estimations for low-yielding and high-yielding years, thus indicating great potential to provide more accurate predictions for years that deviate from average conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4696  
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordonez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F. doi  openurl
  Title (down) Modelling the impact of heat stress on maize yield formation Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 198 Issue Pages 226-237  
  Keywords Heat stress; Maize; Zea mays (L); Crop models; HIGH-TEMPERATURE STRESS; KERNEL NUMBER; CROP GROWTH; GRAIN-YIELD; SIMULATION; CLIMATE; HYBRIDS; SET; VALIDATION; COMPONENTS  
  Abstract The frequency and intensity of extreme high temperature events are expected to increase with climate change. Higher temperatures near anthesis have a large negative effect on maize (Zea mays, L.) grain yield. While crop growth models are commonly used to assess climate change impacts on maize and other crops, it is only recently that they have accounted for such heat stress effects, despite limited field data availability for model evaluation. There is also increasing awareness but limited testing of the importance of canopy temperature as compared to air temperature for heat stress impact simulations. In this study, four independent irrigated field trials with controlled heating imposed using polyethylene shelters were used to develop and evaluate a heat stress response function in the crop modeling framework SIMPLACE, in which the Lintul5 crop model was combined with a canopy temperature model. A dataset from Argentina with the temperate hybrid Nidera AX 842 MG (RM 119) was used to develop a yield reduction function based on accumulated hourly stress thermal time above a critical temperature of 34 degrees C. A second dataset from Spain with a FAO 700 cultivar was used to evaluate the model with daily weather inputs in two sets of simulations. The first was used to calibrate SIMPLACE for conditions with no heat stress, and the second was used to evaluate SIMPLACE under conditions of heat stress using the reduction factor obtained with the Argentine dataset. Both sets of simulations were conducted twice; with the heat stress function alternatively driven with air and simulated canopy temperature. Grain yield simulated under heat stress conditions improved when canopy temperature was used instead of air temperature (RMSE equal to 175 and 309 g m(-2), respectively). For the irrigated and high radiative conditions, raising the critical threshold temperature for heat stress to 39 degrees C improved yield simulation using air temperature (RMSE: 221 gm(-2)) without the need to simulate canopy temperature (RMSE: 175 gm(-2)). However, this approach of adjusting thresholds is only likely to work in environments where climatic variables and the level of soil water deficit are constant, such as irrigated conditions and are not appropriate for rainfed production conditions. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2016-11-17  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290, 1872-6852 ISBN Medium Article  
  Area Expedition Conference  
  Notes ft_macsur, CropM Approved no  
  Call Number MA @ admin @ Serial 4880  
Permanent link to this record
 

 
Author Wu, L.; Whitmore, A.P.; Bellocchi, G. url  doi
openurl 
  Title (down) Modelling the impact of environmental changes on grassland systems with SPACSYS Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 37-39  
  Keywords grassland production; dynamic simulation model; primary production; ecosystem respiration  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 2040-4719 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4655  
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.; Trnka, M.; Fronzek, S.; Carter, T.R.; Kahiluoto, H. doi  openurl
  Title (down) Modelling shifts in agroclimate and crop cultivar response under climate change Type Journal Article
  Year 2013 Publication Ecology and Evolution Abbreviated Journal Ecol. Evol.  
  Volume 3 Issue 12 Pages 4197-4214  
  Keywords Adaptation; agroclimatic indicator; barley; crop simulation model; cultivar response diversity  
  Abstract THIS PAPER AIMS: (i) to identify at national scale areas where crop yield formation is currently most prone to climate-induced stresses, (ii) to evaluate how the severity of these stresses is likely to develop in time and space, and (iii) to appraise and quantify the performance of two strategies for adapting crop cultivation to a wide range of (uncertain) climate change projections. To this end we made use of extensive climate, crop, and soil data, and of two modelling tools: N-AgriCLIM and the WOFOST crop simulation model. N-AgriCLIM was developed for the automatic generation of indicators describing basic agroclimatic conditions and was applied over the whole of Finland. WOFOST was used to simulate detailed crop responses at four representative locations. N-AgriCLIM calculations have been performed nationally for 3829 grid boxes at a 10 × 10 km resolution and for 32 climate scenarios. Ranges of projected shifts in indicator values for heat, drought and other crop-relevant stresses across the scenarios vary widely – so do the spatial patterns of change. Overall, under reference climate the most risk-prone areas for spring cereals are found in south-west Finland, shifting to south-east Finland towards the end of this century. Conditions for grass are likely to improve. WOFOST simulation results suggest that CO2 fertilization and adjusted sowing combined can lead to small yield increases of current barley cultivars under most climate scenarios on favourable soils, but not under extreme climate scenarios and poor soils. This information can be valuable for appraising alternative adaptation strategies. It facilitates the identification of regions in which climatic changes might be rapid or otherwise notable for crop production, requiring a more detailed evaluation of adaptation measures. The results also suggest that utilizing the diversity of cultivar responses seems beneficial given the high uncertainty in climate change projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: