toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stratonovitch, P.; Semenov, M.A. doi  openurl
  Title Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages (down) 3599-3609  
  Keywords Adaptation, Physiological; *Climate Change; Computer Simulation; Europe; Flowers/*physiology; *Hot Temperature; *Quantitative Trait, Heritable; Time Factors; Triticum/*growth & development/*physiology; Downscaling; LARS-WG weather generator; Sirius wheat model.; heat stress; ideotype design; impact assessment  
  Abstract To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4578  
Permanent link to this record
 

 
Author Grosz, B.; Dechow, R.; Gebbert, S.; Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Kuhnert, M.; Yeluripati, J.; Haas, E.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Tao, F.; Roetter, R.; Kassie, B.; Cammarano, D.; Asseng, S.; Weihermueller, L.; Siebert, S.; Gaiser, T.; Ewert, F. doi  openurl
  Title The implication of input data aggregation on up-scaling soil organic carbon changes Type Journal Article
  Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 96 Issue Pages (down) 361-377  
  Keywords Biogeochemical model; Data aggregation; Up-scaling error; Soil organic carbon; DIFFERENT SPATIAL SCALES; NITROUS-OXIDE EMISSIONS; MODELING SYSTEM; DATA; RESOLUTION; CROP MODELS; CLIMATE; LONG; PRODUCTIVITY; CROPLANDS; DAYCENT  
  Abstract In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. (C)2017 Elsevier Ltd. All rights reserved.  
  Address 2017-09-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5176  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  doi
openurl 
  Title Crop modelling for integrated assessment of risk to food production from climate change Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages (down) 287-303  
  Keywords uncertainty; scaling; integrated assessment; risk assessment; adaptation; crop models; agricultural land-use; change adaptation strategies; farming systems simulation; agri-environmental systems; enrichment face experiment; high-temperature stress; change impacts; nitrogen dynamics; atmospheric co2; spring wheat  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4521  
Permanent link to this record
 

 
Author Dietrich, J.P.; Popp, A.; Lotze-Campen, H. url  doi
openurl 
  Title Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model Type Journal Article
  Year 2013 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 263 Issue Pages (down) 233-243  
  Keywords aggregation; downscaling; clustering; information conservation; land use model; scale; scales; agriculture; simulation; dynamics; pattern  
  Abstract Global land-use models have to deal with processes on several spatial scales, ranging from the global scale down to the farm level. The increasing complexity of modern land-use models combined with the problem of limited computational resources represents a challenge to modelers. One solution of this problem is to perform spatial aggregation based on a regular grid or administrative units such as countries. Unfortunately this type of aggregation flattens many regional differences and produces a homogenized map of the world. In this paper we present an alternative aggregation approach using clustering methods. Clustering reduces the loss of information due to aggregation by choosing an appropriate aggregation pattern. We investigate different clustering methods, examining their quality in terms of information conservation. Our results indicate that clustering is always a good choice and preferable compared to grid-based aggregation. Although all the clustering methods we tested delivered a higher degree of information conservation than grid-based aggregation, the choice of clustering method is not arbitrary. Comparing outputs of a model fed with original data and a model fed with aggregated data, bottom-up clustering delivered the best results for the whole range of numbers of clusters tested. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4488  
Permanent link to this record
 

 
Author Constantin, J.; Raynal, H.; Casellas, E.; Hoffman, H.; Bindi, M.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kersebaum, K.-C.; Klatt, S.; Kuhnert, M.; Lewan, E.; Maharjan, G.R.; Moriondo, M.; Nendel, C.; Roggero, P.P.; Specka, X.; Trombi, G.; Villa, A.; Wang, E.; Weihermueller, L.; Yeluripati, J.; Zhao, Z.; Ewert, F.; Bergez, J.-E. doi  openurl
  Title Management and spatial resolution effects on yield and water balance at regional scale in crop models Type Journal Article
  Year 2019 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 275 Issue Pages (down) 184-195  
  Keywords Drainage; Evapotranspiration; Aggregation; Decision rules; Scaling; winter-wheat yield; data aggregation; sowing dates; area index; input; data; carbon; growth; irrigation; productivity; assimilation  
  Abstract Due to the more frequent use of crop models at regional and national scale, the effects of spatial data input resolution have gained increased attention. However, little is known about the influence of variability in crop management on model outputs. A constant and uniform crop management is often considered over the simulated area and period. This study determines the influence of crop management adapted to climatic conditions and input data resolution on regional-scale outputs of crop models. For this purpose, winter wheat and maize were simulated over 30 years with spatially and temporally uniform management or adaptive management for North Rhine-Westphalia ((similar to)34 083 km(2)), Germany. Adaptive management to local climatic conditions was used for 1) sowing date, 2) N fertilization dates, 3) N amounts, and 4) crop cycle length. Therefore, the models were applied with four different management sets for each crop. Input data for climate, soil and management were selected at five resolutions, from 1 x 1 km to 100 x 100 km grid size. Overall, 11 crop models were used to predict regional mean crop yield, actual evapotranspiration, and drainage. Adaptive management had little effect (< 10% difference) on the 30-year mean of the three output variables for most models and did not depend on soil, climate, and management resolution. Nevertheless, the effect was substantial for certain models, up to 31% on yield, 27% on evapotranspiration, and 12% on drainage compared to the uniform management reference. In general, effects were stronger on yield than on evapotranspiration and drainage, which had little sensitivity to changes in management. Scaling effects were generally lower than management effects on yield and evapotranspiration as opposed to drainage. Despite this trend, sensitivity to management and scaling varied greatly among the models. At the annual scale, effects were stronger in certain years, particularly the management effect on yield. These results imply that depending on the model, the representation of management should be carefully chosen, particularly when simulating yields and for predictions on annual scale.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: