toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kässi, P.; Känkänen, H.; Niskanen, O.; Lehtonen, H.; Höglind, M. url  doi
openurl 
  Title Farm level approach to manage grass yield variation under climate change in Finland and north-western Russia Type Journal Article
  Year 2015 Publication Biosystems Engineering Abbreviated Journal Biosystems Engineering  
  Volume 140 Issue Pages (down) 11-22  
  Keywords silage grass; risk management; dairy farms; buffer storage; agricultural economics; grassland modelling; dairy-cows; impact; security; timothy; harvest; future; growth; norway; europe; time  
  Abstract Cattle feeding in Northern Europe is based on grass silage, but grass growth is highly dependent on weather conditions. If ensuring sufficient silage availability in every situation is prioritised, the lowest expected yield level determines the cultivated area in farmers’ decision-making. One way to manage the variation in grass yield is to increase grass production and silage storage capacity so that they exceed the annual consumption at the farm. The cost of risk management in the current and the projected future climate was calculated taking into account grassland yield and yield variability for three study areas under current and mid-21st century climate conditions. The dataset on simulated future grass yields used as input for the risk management calculations were taken from a previously published simulation study. Strategies investigated included using up to 60% more silage grass area than needed in a year with average grass yields, and storing silage for up to 6 months more than consumed in a year (buffer storage). According to the results, utilising an excess silage grass area of 20% and a silage buffer storage capacity of 6 months were the most economic ways of managing drought risk in both the baseline climate and the projected climate of 2046-2065. It was found that the silage yield risk due to drought is likely to decrease in all studied locations, but the drought risk and costs implied still remain significant. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1537-5110 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4671  
Permanent link to this record
 

 
Author Sollitto, D.; De Benedetto, D.; Castrignanò, A.; Crescimanno, G.; Provenzano, G.; Ventrella, D. url  doi
openurl 
  Title Spatial data fusion and analysis for soil characterization: a case study in a coastal basin of south-western Sicily (southern Italy) Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages (down) 4  
  Keywords salinization risk; soil retention curve; geostatistics; factor Kriging; intrinsic random funciton  
  Abstract Salinization is one of the most serious problems confronting sustainable agriculture in semi-arid and arid regions. Accurate mapping of soil salinization and the associated risk represent a fundamental step in planning agricultural and remediation activities. Geostatistical analysis is very useful for soil quality assessment because it makes it possible to determine the spatial relationships between selected variables and to produce synthetic maps of spatial variation. The main objective of this paper was to map the soil salinization risk in the Delia-Nivolelli alluvial basin (south-western Sicily, southern Italy), using multivariate geostatistical techniques and a set of topographical, physical and soil hydraulic properties. Elevation data were collected from existing topographic maps and analysed preliminarily to improve the estimate precision of sparsely sampled primary variables. For interpolation multi-collocated cokriging was applied to the dataset, including textural and hydraulic properties and electrical conductivity measurements carried out on 128 collected soil samples, using elevation data as auxiliary variable. Spatial dependence among elevation and physical soil properties was explored with factorial kriging analysis (FKA) that could isolate and display the sources of variation acting at different spatial scales. FKA isolated significant regionalised factors which give a concise description of the complex soil physical variability at the different selected spatial scales. These factors mapped, allowed the delineation of zones at different salinisation risk to be managed separately to control and prevent salinization risk. The proposed methodology could be a valid support for land use and soil remediation planning at regional scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4595  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: