toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kersebaum, K.C.; Boote, K.J.; Jorgenson, J.S.; Nendel, C.; Bindi, M.; Frühauf, C.; Gaiser, T.; Hoogenboom, G.; Kollas, C.; Olesen, J.E.; Rötter, R.P.; Ruget, F.; Thorburn, P.J.; Trnka, M.; Wegehenkel, M. url  doi
openurl 
  Title Analysis and classification of data sets for calibration and validation of agro-ecosystem models Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 402-417  
  Keywords field experiments; data quality; crop modelling; data requirement; minimum data; software; different climatic zones; soil-moisture sensors; spatial variability; nitrogen dynamics; crop models; systems simulation; wheat yields; elevated co2; growth; field  
  Abstract Experimental field data are used at different levels of complexity to calibrate, validate and improve agroecosystem models to enhance their reliability for regional impact assessment. A methodological framework and software are presented to evaluate and classify data sets into four classes regarding their suitability for different modelling purposes. Weighting of inputs and variables for testing was set from the aspect of crop modelling. The software allows users to adjust weights according to their specific requirements. Background information is given for the variables with respect to their relevance for modelling and possible uncertainties. Examples are given for data sets of the different classes. The framework helps to assemble high quality data bases, to select data from data bases according to modellers requirements and gives guidelines to experimentalists for experimental design and decide on the most effective measurements to improve the usefulness of their data for modelling, statistical analysis and data assimilation. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4563  
Permanent link to this record
 

 
Author Kipling, R.P.; Topp, C.F.E.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.J.; Lauwers, L.; Gulzari, S.O.; Reidsma, P.; Rolinski, S.; Ruiz-Ramos, M.; Sandars, D.L.; Sandor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Shrestha, S.; Weindl, I.; Eory, V. doi  openurl
  Title To what extent is climate change adaptation a novel challenge for agricultural modellers Type Journal Article
  Year 2019 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 120 Issue Pages Unsp 104492  
  Keywords Adaptation; Agricultural modelling; Climate change; Research challenges; greenhouse-gas emissions; farm-level adaptation; land-use; food; security; adapting agriculture; livestock production; decision-making; change impacts; dairy farms; crop  
  Abstract Modelling is key to adapting agriculture to climate change (CC), facilitating evaluation of the impacts and efficacy of adaptation measures, and the design of optimal strategies. Although there are many challenges to modelling agricultural CC adaptation, it is unclear whether these are novel or, whether adaptation merely adds new motivations to old challenges. Here, qualitative analysis of modellers’ views revealed three categories of challenge: Content, Use, and Capacity. Triangulation of findings with reviews of agricultural modelling and Climate Change Risk Assessment was then used to highlight challenges specific to modelling adaptation. These were refined through literature review, focussing attention on how the progressive nature of CC affects the role and impact of modelling. Specific challenges identified were: Scope of adaptations modelled, Information on future adaptation, Collaboration to tackle novel challenges, Optimisation under progressive change with thresholds, and Responsibility given the sensitivity of future outcomes to initial choices under progressive change.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5223  
Permanent link to this record
 

 
Author Lotze-Campen, H.; Verburg, P.H.; Popp, A.; Lindner, M.; Verkerk, P.J.; Moiseyev, A.; Schrammeijer, E.; Helming, J.; Tabeau, A.; Schulp, C.J.E.; van der Zanden, E.H.; Lavalle, C.; e Silva, F.B.; Walz, A.; Bodirsky, B. url  doi
openurl 
  Title A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways Type Journal Article
  Year 2018 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume 18 Issue 3 Pages 751-762  
  Keywords Land use change; Integrated modelling; Cross-scale interaction; Nature protection; Impact assessment  
  Abstract Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1436-3798 ISBN Medium  
  Area TradeM Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5004  
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. url  doi
openurl 
  Title Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization Type Journal Article
  Year 2012 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 12 Issue 3 Pages 407-419  
  Keywords Modelling; Climate change; Agronomic adaptation strategies; Yield; Tomato; Winter durum wheat; air co2 enrichment; change scenarios; cropping systems; change impacts; simulation; agriculture; variability; increase; model; responses; Environmental Sciences & Ecology  
  Abstract Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2A degrees C (centred over 2030-2060) and +5A degrees C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5A degrees C future climate scenario. Under the +2A degrees C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2A degrees C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4480  
Permanent link to this record
 

 
Author Lehtonen, H. openurl 
  Title Evaluating adaptation and the production development of Finnish agriculture in climate and global change Type Journal Article
  Year 2015 Publication Agricultural and Food Science Abbreviated Journal Agricultural and Food Science  
  Volume 24 Issue 3 Pages 219-234  
  Keywords agricultural sector modelling; economic adjustment; global prices; climate change; finnish agriculture; crop production; land-use; challenge; ensembles; Finland; Europe; policy  
  Abstract Agricultural product prices and policies influence the development of crop yields under climate change through farm level management decisions. On this basis, five main scenarios were specified for agricultural commodity prices and crop yields. An economic agricultural sector model was used in order to assess the impacts of the scenarios on production, land use and farm income in Finland. The results suggest that falling crop yields, if realized due to low prices and restrictive policies, will result in decreasing crop and livestock production and increasing nutrient surplus. Slowly increasing crop yields could stabilise production and increase farm income. Significantly higher crop prices and yields are required, however, for any marked increase in production in Finland. Cereals production would increase relatively more than livestock production, if there were high prices for agricultural products. This is explained by abundant land resources, a high opportunity cost of labour and policies maintaining current dairy and beef production.  
  Address 2016-07-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1459-6067 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4750  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: