toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dass, P.; Müller, C.; Brovkin, V.; Cramer, W. url  doi
openurl 
  Title Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes Type Journal Article
  Year 2013 Publication Earth System Dynamics Abbreviated Journal Earth System Dynamics  
  Volume 4 Issue 2 Pages (down) 409-424  
  Keywords land-use change; global vegetation model; soil carbon; climate-change; surface albedo; cover changes; snow cover; remind-r; forest; productivity  
  Abstract Numerous studies have concluded that deforestation of the high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance, however, may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely theoretical in order to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. For realistic assumptions of land suitability, the total emissions computed in this study are higher than that of previous studies assessing the effects of boreal deforestation. The warming due to biogeochemical effects ranges from 0.12 to 0.32 degrees C, depending on the climate sensitivity. Using LPJmL to assess the mitigation potential of bioenergy plantations in the suitable areas of the deforested region, we find that the global biophysical bioenergy potential is 68.1 +/- 5.6 EJ yr(-1) of primary energy at the end of the 21st century in the most plausible scenario. The avoided combustion of fossil fuels over the time frame of this experiment would lead to further cooling. However, since the carbon debt caused by the cumulative emissions is not repaid by the end of the 21st century, the global temperatures would increase by 0.04 to 0.11 degrees C. The carbon dynamics in the high latitudes especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in the role for the Earth’s carbon and energy budget.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4987 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4486  
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. url  doi
openurl 
  Title Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization Type Journal Article
  Year 2012 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 12 Issue 3 Pages (down) 407-419  
  Keywords Modelling; Climate change; Agronomic adaptation strategies; Yield; Tomato; Winter durum wheat; air co2 enrichment; change scenarios; cropping systems; change impacts; simulation; agriculture; variability; increase; model; responses; Environmental Sciences & Ecology  
  Abstract Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2A degrees C (centred over 2030-2060) and +5A degrees C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5A degrees C future climate scenario. Under the +2A degrees C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2A degrees C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4480  
Permanent link to this record
 

 
Author Kersebaum, K.C.; Boote, K.J.; Jorgenson, J.S.; Nendel, C.; Bindi, M.; Frühauf, C.; Gaiser, T.; Hoogenboom, G.; Kollas, C.; Olesen, J.E.; Rötter, R.P.; Ruget, F.; Thorburn, P.J.; Trnka, M.; Wegehenkel, M. url  doi
openurl 
  Title Analysis and classification of data sets for calibration and validation of agro-ecosystem models Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages (down) 402-417  
  Keywords field experiments; data quality; crop modelling; data requirement; minimum data; software; different climatic zones; soil-moisture sensors; spatial variability; nitrogen dynamics; crop models; systems simulation; wheat yields; elevated co2; growth; field  
  Abstract Experimental field data are used at different levels of complexity to calibrate, validate and improve agroecosystem models to enhance their reliability for regional impact assessment. A methodological framework and software are presented to evaluate and classify data sets into four classes regarding their suitability for different modelling purposes. Weighting of inputs and variables for testing was set from the aspect of crop modelling. The software allows users to adjust weights according to their specific requirements. Background information is given for the variables with respect to their relevance for modelling and possible uncertainties. Examples are given for data sets of the different classes. The framework helps to assemble high quality data bases, to select data from data bases according to modellers requirements and gives guidelines to experimentalists for experimental design and decide on the most effective measurements to improve the usefulness of their data for modelling, statistical analysis and data assimilation. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4563  
Permanent link to this record
 

 
Author Müller, C. doi  openurl
  Title African lessons on climate change risks for agriculture Type Journal Article
  Year 2013 Publication Annual Review of Nutrition Abbreviated Journal Ann. Rev. Nutr.  
  Volume 33 Issue 1 Pages (down) 395-411  
  Keywords Africa/epidemiology; *Climate Change/economics; Crops, Agricultural/economics/*growth & development; Diet/adverse effects/economics; Forecasting; *Global Health/economics/trends; Humans; Malnutrition/economics/epidemiology/prevention & control; *Models, Theoretical; Risk; Soil/chemistry; Water Resources/economics  
  Abstract Climate change impact assessments on agriculture are subject to large uncertainties, as demonstrated in the present review of recent studies for Africa. There are multiple reasons for differences in projections, including uncertainties in greenhouse gas emissions and patterns of climate change; assumptions on future management, aggregation, and spatial extent; and methodological differences. Still, all projections agree that climate change poses a significant risk to African agriculture. Most projections also see the possibility of increasing agricultural production under climate change, especially if suitable adaptation measures are assumed. Climate change is not the only projected pressure on African agriculture, which struggles to meet demand today and may need to feed an additional one billion individuals by 2050. Development strategies are urgently needed, but they will need to consider future climate change and its inherent uncertainties. Science needs to show how existing synergies between climate change adaptation and development can be exploited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0199-9885 1545-4312 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4496  
Permanent link to this record
 

 
Author Eza, U.; Shtiliyanova, A.; Borras, D.; Bellocchi, G.; Carrère, P.; Martin, R. url  doi
openurl 
  Title An open platform to assess vulnerabilities to climate change: An application to agricultural systems Type Journal Article
  Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics  
  Volume 30 Issue Pages (down) 389-396  
  Keywords climate change; grasslands; modeling platform; vulnerability assessment; pasture simulation-model; software component; solar-radiation; crop production; change impacts; adaptation; indicator; makers  
  Abstract Numerous climate futures are now available from global climate models. Translation of climate data such as precipitation and temperatures into ecologically meaningful outputs for managers and planners is the next frontier. We describe a model-based open platform to assess vulnerabilities of agricultural systems to climate change on pixel-wise data. The platform includes a simulation modeling engine and is suited to work with NetCDF format of input and output files. In a case study covering a region (Auvergne) in the Massif Central of France, the platform is configured to characterize climate (occurrence of arid conditions in historical and projected climate records), soils and human management, and is then used to assess the vulnerability to climate change of grassland productivity (downscaled to a fine scale). We demonstrate how using climate time series, and process-based simulations vulnerabilities can be defined at fine spatial scales relevant to farmers and land managers, and can be incorporated into management frameworks. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1574-9541 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4708  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: