toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Elliott, J.; Fujimori, S.; Hasegawa, T.; Heyhoe, E.; Kyle, P.; Von Lampe, M.; Lotze-Campen, H.; Mason d’Croz, D.; van Meijl, H.; van der Mensbrugghe, D.; Müller, C.; Popp, A.; Robertson, R.; Robinson, S.; Schmid, E.; Schmitz, C.; Tabeau, A.; Willenbockel, D. doi  openurl
  Title (up) Climate change effects on agriculture: economic responses to biophysical shocks Type Journal Article
  Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.  
  Volume 111 Issue 9 Pages 3274-3279  
  Keywords Agriculture/*economics; Carbon Dioxide/analysis; *Climate Change; Commerce/statistics & numerical data; Computer Simulation; Crops, Agricultural/*growth & development; Forecasting; Humans; *Models, Economic; agricultural productivity; climate change adaptation; integrated assessment; model intercomparison  
  Abstract Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 1091-6490 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4535  
Permanent link to this record
 

 
Author Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W. doi  openurl
  Title (up) Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 81-92  
  Keywords Integrated assessment; Crop management; Climate change; Europe; INTEGRATED ASSESSMENT; EUROPEAN AGRICULTURE; FOOD SECURITY; HEAT-STRESS; ADAPTATION; SYSTEMS; TEMPERATURE; SCENARIOS; WHEAT; PRODUCTIVITY; Vries W., 2011, ENVIRONMENTAL POLLUTION, V159, P3254  
  Abstract Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time requirements to minimize yield losses or realize yield gains. The main objective of this study was to investigate the sensitivity of climate change impacts on European crop yields, land use, production and environmental variables to adaptations in crops sowing dates and varieties’ thermal time requirements. A crop, economic and environmental model were coupled in an integrated assessment modelling approach for six important crops, for 27 countries of the European Union (EU27) to assess results of three SRES climate change scenarios to 2050. Crop yields under climate change were simulated considering three different management cases; (i) no change in crop management from baseline conditions (NoAd), (ii) adaptation of sowing date and thermal time requirements to give highest yields to 2050 (Opt) and (iii) a more conservative adaptation of sowing date and thermal time requirements (Act). Averaged across EU27, relative changes in water-limited crop yields due to climate change and increased CO2 varied between -6 and + 21% considering NoAd management, whereas impacts with Opt management varied between + 12 and + 53%, and those under Act management between 2 and + 27%. However, relative yield increases under climate change increased to + 17 and + 51% when technology progress was also considered. Importantly, the sensitivity to crop management assumptions of land use, production and environmental impacts were less pronounced than for crop yields due to the influence of corresponding market, farm resource and land allocation adjustments along the model chain acting via economic optimization of yields. We conclude that assumptions about crop sowing dates and thermal time requirements affect impact variables but to a different extent and generally decreasing for variables affected by economic drivers.  
  Address 2017-11-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5178  
Permanent link to this record
 

 
Author Wolf, J.; Kanellopoulos, A.; Kros, J.; Webber, H.; Zhao, G.; Britz, W.; Reinds, G.J.; Ewert, F.; de Vries, W. url  doi
openurl 
  Title (up) Combined analysis of climate, technological and price changes on future arable farming systems in Europe Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 140 Issue Pages 56-73  
  Keywords agriculture; capri; climate change; environmental impact; farming system; fssim; integrated assessment; integrator; model linkage; n emission; price change; scenarios; simplace; technological change; crop simulation-models; agricultural land-use; integrated assessment; growth; strategies; nitrogen; soils; environment; scenarios; emissions  
  Abstract In this study, we compare the relative importance of climate change to technological, management, price and policy changes on European arable farming systems. This required linking four models: the SIMPLACE crop growth modelling framework to calculate future yields under climate change for arable crops; the CAPRI model to estimate impacts on global agricultural markets, specifically product prices; the bio-economic farm model FSSIM to calculate the future changes in cropping patterns and farm net income at the farm and regional level; and the environmental model INTEGRATOR to calculate nitrogen (N) uptake and losses to air and water. First, the four linked models were applied to analyse the effect of climate change only or a most likely baseline (i.e. B1) scenario for 2050 as well as for two alternative scenarios with, respectively, strong (i.e. A1-b1) and weak economic growth (B2) for five regions/countries across Europe (i.e. Denmark, Flevoland, Midi Pyrenees, Zachodniopomorsld and Andalucia). These analyses Were repeated but assuming in addition to climate change impacts, also the effects of changes in technology and management on crop yields, the effects of changes in prices and policies in 2050, and the effects of all factors together. The outcomes show that the effects of climate change to 2050 result in higher farm net incomes in the Northern and Northern-Central EU regions, in practically unchanged farm net incomes in the Central and Central-Southern EU regions, and in much lower farm net incomes in Southern EU regions compared to those in the base year. Climate change in combination with improved technology and farm management and/or with price changes towards 2050 results in a higher to much higher farm net incomes. Increases in farm net income for the B1 and A1-b1 scenarios are moderately stronger than those for the B2 scenario, due to the smaller increases in product prices and/or yields for the B2 scenario. Farm labour demand slightly to moderately increases towards 2050 as related to changes in cropping patterns. Changes in N2O emissions and N leaching compared to the base year are mainly caused by changes in total N inputs from the applied fertilizers and animal manure, which in turn are influenced by changes in crop yields and cropping patterns, whereas NH3 emissions are mainly determined by assumed improvements in manure application techniques. N emissions and N leaching strongly increase in Denmark and Zachodniopomorski, slightly decrease to moderately increase in Flevoland and Midi-Pyrenees, and strongly decrease in Andalucia, except for NH3 emissions which zero to moderately decrease in Flevoland and Denmark. (C) 2015 Elsevier Ltd. All tights reserved.  
  Address 2015-10-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4703  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  doi
openurl 
  Title (up) Crop modelling for integrated assessment of risk to food production from climate change Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 287-303  
  Keywords uncertainty; scaling; integrated assessment; risk assessment; adaptation; crop models; agricultural land-use; change adaptation strategies; farming systems simulation; agri-environmental systems; enrichment face experiment; high-temperature stress; change impacts; nitrogen dynamics; atmospheric co2; spring wheat  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4521  
Permanent link to this record
 

 
Author Zhao, G.; Siebert, S.; Enders, A.; Rezaei, E.E.; Yan, C.; Ewert, F. url  doi
openurl 
  Title (up) Demand for multi-scale weather data for regional crop modeling Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 200 Issue Pages 156-171  
  Keywords multi-scale; spatial heterogeneity; spatial resolution; crop model; climate variability; climate-change scenarios; integrated assessment; large-scale; phenological development; agricultural systems; spatial-resolution; data aggregation; european-union; winter-wheat; input data  
  Abstract A spatial resolution needs to be determined prior to using models to simulate crop yields at a regional scale, but a dilemma exists in compromising between different demands. A fine spatial resolution demands extensive computation load for input data assembly, model runs, and output analysis. A coarse spatial resolution could result in loss of spatial detail in variability. This paper studied the impact of spatial resolution, data aggregation and spatial heterogeneity of weather data on simulations of crop yields, thus providing guidelines for choosing a proper spatial resolution for simulations of crop yields at regional scale. Using a process-based crop model SIMPLACE (LINTUL2) and daily weather data at 1 km resolution we simulated a continuous rainfed winter wheat cropping system at the national scale of Germany. Then we aggregated the weather data to four resolutions from 10 to 100 km, repeated the simulation, compared them with the 1 km results, and correlated the difference with the intra-pixel heterogeneity quantified by an ensemble of four semivariogram models. Aggregation of weather data had small effects over regions with a flat terrain located in northern Germany, but large effects over southern regions with a complex topography. The spatial distribution of yield bias at different spatial resolutions was consistent with the intra-pixel spatial heterogeneity of the terrain and a log-log linear relationship between them was established. By using this relationship we demonstrated the way to optimize the model resolution to minimize both the number of simulation runs and the expected loss of spatial detail in variability due to aggregation effects. We concluded that a high spatial resolution is desired for regions with high spatial environmental heterogeneity, and vice versa. This calls for the development of multi-scale approaches in regional and global crop modeling. The obtained results require substantiation for other production situations, crops, output variables and for different crop models. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4753  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: