toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. url  doi
openurl 
  Title Integrated crop water management might sustainably halve the global food gap Type Journal Article
  Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 11 Issue 2 Pages 025002  
  Keywords sustainable intensification; yield gap; water harvesting; conservation agriculture; irrigation efficiency; food security; climate change adaptation; sub-saharan africa; rain-fed agriculture; dry-spell mitigation; supplemental irrigation; climate-change; smallholder irrigation; environmental impacts; developing-countries; semiarid region; south-africa  
  Abstract As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4733  
Permanent link to this record
 

 
Author Kanellopoulos, A.; Reidsma, P.; Wolf, J.; van Ittersum, M.K. url  doi
openurl 
  Title Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 69-80  
  Keywords integrated assessment; data envelopment analysis; farm adaptation; farm model; technical efficiency; agricultural land-use; integrated assessment; european-community; future; crop; efficiency; impacts; systems  
  Abstract Future farming systems are challenged to adapt to the changing socio-economic and bio-physical environment in order to remain competitive and to meet the increasing requirements for food and fibres. The scientific challenge is to evaluate the consequences of predefined scenarios, identify current “best” practices and explore future adaptation strategies at farm level. The objective of this article is to assess the impact of different climate change and socio-economic scenarios on arable farming systems in Flevoland (the Netherlands) and to explore possible adaptation strategies. Data Envelopment Analysis was used to identify these current “best” practices while bio-economic modelling was used to calculate a number of important economic and environmental indicators in scenarios for 2050. Relative differences between yields with and without climate change and technological change were simulated with a crop bio-physical model and used as a correction factors for the observed crop yields of current “best” practices. We demonstrated the capacity of the proposed methodology to explore multiple scenarios by analysing the importance of drivers of change, while accounting for variation between individual farms. It was found that farmers in Flevoland are in general technically efficient and a substantial share of the arable land is currently under profit maximization. We found that climate change increased productivity in all tested scenarios. However, the effects of different socio-economic scenarios (globalized and regionalized economies) on the economic and environmental performance of the farms were variable. Scenarios of a globalized economy where the prices of outputs were simulated to increase substantially might result in increased average gross margin and lower average (per ha) applications of crop protection and fertilizers. However, the effects might differ between different farm types. It was found that, the abolishment of sugar beet quota and changes of future prices of agricultural inputs and outputs in such socio-economic scenario (i.e. globalized economy) caused a decrease in gross margins of smaller (in terms of economic size) farms, while gross margin of larger farms increased. In scenarios where more regionalized economies and a moderate climate change are assumed, the future price ratios between inputs and outputs are shown to be the key factors for the viability of arable farms in our simulations. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4526  
Permanent link to this record
 

 
Author Kässi, P.; Känkänen, H.; Niskanen, O.; Lehtonen, H.; Höglind, M. url  doi
openurl 
  Title Farm level approach to manage grass yield variation under climate change in Finland and north-western Russia Type Journal Article
  Year 2015 Publication Biosystems Engineering Abbreviated Journal Biosystems Engineering  
  Volume 140 Issue Pages 11-22  
  Keywords silage grass; risk management; dairy farms; buffer storage; agricultural economics; grassland modelling; dairy-cows; impact; security; timothy; harvest; future; growth; norway; europe; time  
  Abstract Cattle feeding in Northern Europe is based on grass silage, but grass growth is highly dependent on weather conditions. If ensuring sufficient silage availability in every situation is prioritised, the lowest expected yield level determines the cultivated area in farmers’ decision-making. One way to manage the variation in grass yield is to increase grass production and silage storage capacity so that they exceed the annual consumption at the farm. The cost of risk management in the current and the projected future climate was calculated taking into account grassland yield and yield variability for three study areas under current and mid-21st century climate conditions. The dataset on simulated future grass yields used as input for the risk management calculations were taken from a previously published simulation study. Strategies investigated included using up to 60% more silage grass area than needed in a year with average grass yields, and storing silage for up to 6 months more than consumed in a year (buffer storage). According to the results, utilising an excess silage grass area of 20% and a silage buffer storage capacity of 6 months were the most economic ways of managing drought risk in both the baseline climate and the projected climate of 2046-2065. It was found that the silage yield risk due to drought is likely to decrease in all studied locations, but the drought risk and costs implied still remain significant. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1537-5110 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4671  
Permanent link to this record
 

 
Author Kersebaum, K.C.; Nendel, C. url  doi
openurl 
  Title Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 22-32  
  Keywords climate change; co2 effect; crop yield; water use efficiency; groundwater; modeling nitrogen dynamics; winter-wheat; carbon-dioxide; assessing uncertainties; agricultural crops; potential impact; enrichment face; elevated co2; soil; simulation  
  Abstract Impact of climate change on crop growth, groundwater recharge and nitrogen leaching in winter wheat production in Germany was assessed using the agro-ecosystem model HERMES with a downscaled (WETTREG) climate change scenario A1B from the ECHAM5 global circulation model. Three alternative algorithms describing the impact of atmospheric CO2 concentration on crop growth (a simple Farquhar-type algorithm, a combined light-use efficiency – maximum assimilation approach and a simple scaling of the maximum assimilation rate) in combination with a Penman-Monteith approach which includes a simple stomata conduction model for evapotranspiration under changing CO2 concentrations were compared within the framework of the HERMES model. The effect of differences in regional climate change, site conditions and different CO2 algorithms on winter wheat yield, groundwater recharge and nitrogen leaching was assessed in 22 regional simulation case studies across Germany. Results indicate that the effects of climate change on wheat production will vary across Germany due to different regional expressions of climate change projection. Predicted yield changes between the reference period (1961-1990) and a future period (2021-2050) range from -0.4 t ha(-1), -0.8 t ha(-1) and -0.6 t ha(-1) at sites in southern Germany to +0.8 t ha(-1), +0.6 t ha(-1) and +0.8 t ha(-1) at coastal regions for the three CO2 algorithms, respectively. On average across all regions, a relative yield change of +0.9%, +3.0%, and +6.0%, respectively, was predicted for Germany. In contrast, a decrease of -11.6% was predicted without the consideration of a CO2 effect. However, simulated yield changes differed even within regions as site conditions had a strong influence on crop growth. Particularly, groundwater-affected sites showed a lower vulnerability to increasing drought risk. Groundwater recharge was estimated to change correspondingly to changes in precipitation. The consideration of the CO2 effect on transpiration in the model led to a prediction of higher rates of annual deep percolation (+16 mm on average across all sites), which was due to higher water-use efficiency of the crops. In contrast to groundwater recharge, simulated nitrogen leaching varied with the choice of the photosynthesis algorithm, predicting a slight reduction in most of the areas. The results underline the necessity of high-resolution data for model-based regional climate change impact assessment and development of adaptation measures. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4527  
Permanent link to this record
 

 
Author Kipling, R.P.; Topp, C.F.E.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.J.; Lauwers, L.; Gulzari, S.O.; Reidsma, P.; Rolinski, S.; Ruiz-Ramos, M.; Sandars, D.L.; Sandor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Shrestha, S.; Weindl, I.; Eory, V. doi  openurl
  Title To what extent is climate change adaptation a novel challenge for agricultural modellers Type Journal Article
  Year 2019 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 120 Issue Pages Unsp 104492  
  Keywords Adaptation; Agricultural modelling; Climate change; Research challenges; greenhouse-gas emissions; farm-level adaptation; land-use; food; security; adapting agriculture; livestock production; decision-making; change impacts; dairy farms; crop  
  Abstract Modelling is key to adapting agriculture to climate change (CC), facilitating evaluation of the impacts and efficacy of adaptation measures, and the design of optimal strategies. Although there are many challenges to modelling agricultural CC adaptation, it is unclear whether these are novel or, whether adaptation merely adds new motivations to old challenges. Here, qualitative analysis of modellers’ views revealed three categories of challenge: Content, Use, and Capacity. Triangulation of findings with reviews of agricultural modelling and Climate Change Risk Assessment was then used to highlight challenges specific to modelling adaptation. These were refined through literature review, focussing attention on how the progressive nature of CC affects the role and impact of modelling. Specific challenges identified were: Scope of adaptations modelled, Information on future adaptation, Collaboration to tackle novel challenges, Optimisation under progressive change with thresholds, and Responsibility given the sensitivity of future outcomes to initial choices under progressive change.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5223  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: