toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghaley, B.B.; Porter, J.R. doi  openurl
  Title (up) Determination of biomass accumulation in mixed belts of Salix, Corylus and Alnus species in combined food and energy production system Type Journal Article
  Year 2014 Publication Biomass and Bioenergy Abbreviated Journal Biomass and Bioenergy  
  Volume 63 Issue Pages 86-91  
  Keywords allometric equation; destructive and non-destructive method; stool and biomass yield; bio-energy belts; food and fodder crops; short rotation woody crops; short-rotation forestry; willow; plantations; sweden; coppice; equations; growth; poplar; trees; yield  
  Abstract Given the energetic, demographic and the climatic challenges faced today, we designed a combined food and energy (CFE) production system integrating food, fodder and mixed belts of Salix, Alnus and Corylus sp. as bioenergy belts. The objective was to assess the shoot dry weight-stem diameter allometric relationship based on stem diameter at 10 (SD10) and 55 cm (SD55) from the shoot base in the mixed bioenergy belts. Allometric relations based on SD10 and SD55 explained 90-96% and 90-98% of the variation in shoot dry weights respectively with no differences between the destructive and the non-destructive methods. The individual stool yields varied widely among the species and within willow species with biomass yield range of 37.60-92.00 oven dry tons (ODT) ha (1) in 4-year growth cycle. The biomass yield of the bioenergy belt, predicted by allometric relations was 48.84 ODT ha 1 in 4-year growth cycle corresponding to 12.21 ODT ha (1) year (1). The relatively high biomass yield is attributed to the border effects and the ‘fertilizing effect’ of alder due to nitrogen fixation, benefitting other SWRC components. On termination of 4-year growth cycle, the bioenergy belts were harvested and the biomass yield recorded was 12.54 ODT ha (1) year (1), in close proximity to the biomass yield predicted by the allometric equations, lending confidence and robustness of the model for biomass yield determination in such integrated agro-ecosystem. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4624  
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; Ferrise, R.; Finger, R.; Fodor, N.; Gabaldón-Leal, C.; Gaiser, T.; Jabloun, M.; Kersebaum, K.-C.; Lizaso, J.I.; Lorite, I.J.; Manceau, L.; Moriondo, M.; Nendel, C.; Rodríguez, A.; Ruiz-Ramos, M.; Semenov, M.A.; Siebert, S.; Stella, T.; Stratonovitch, P.; Trombi, G.; Wallach, D. doi  openurl
  Title (up) Diverging importance of drought stress for maize and winter wheat in Europe Type Journal Article
  Year 2018 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 9 Issue Pages 4249  
  Keywords Climate-Change Impacts; Air CO2 Enrichment; Food Security; Heat-Stress; Nitrogen Dynamics; Semiarid Environments; Canopy Temperature; Simulation-Model; Crop Production; Elevated CO2  
  Abstract Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.  
  Address 2018-10-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5211  
Permanent link to this record
 

 
Author Milford, A.B.; Le Mouel, C.; Bodirsky, B.L.; Rolinski, S. doi  openurl
  Title (up) Drivers of meat consumption Type Journal Article
  Year 2019 Publication Appetite Abbreviated Journal Appetite  
  Volume 141 Issue Pages Unsp 104313  
  Keywords Meat consumption; Nutrition transition; Climate change mitigation; Cross-country analysis; nutrition transition; food; sustainability; globalization; countries; future; health; income; price  
  Abstract Increasing global levels of meat consumption are a threat to the environment and to human health. To identify measures that may change consumption patterns towards more plant-based foods, it is necessary to improve our understanding of the causes behind the demand for meat. In this paper we use data from 137 different countries to identify and assess factors that influence meat consumption at the national level using a cross-country multivariate regression analysis. We specify either total meat or ruminant meat as the dependent variable and we consider a broad range of potential drivers of meat consumption. The combination of explanatory variables we use is new for this type of analysis. In addition, we estimate the relative importance of the different drivers. We find that income per capita followed by rate of urbanisation are the two most important drivers of total meat consumption per capita. Income per capita and natural endowment factors are major drivers of ruminant meat consumption per capita. Other drivers are Western culture, Muslim religion, female labour participation, economic and social globalisation and meat prices. The main identified drivers of meat demand are difficult to influence through direct policy intervention. Thus, acting indirectly on consumers’ preferences and consumption habits (for instance through information, education policy and increased availability of ready-made plant based products) could be of key importance for mitigating the rise of meat consumption per capita all over the world.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0195-6663 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5224  
Permanent link to this record
 

 
Author Liu, X.; Lehtonen, H.; Purola, T.; Pavlova, Y.; Rötter, R.; Palosuo, T. url  doi
openurl 
  Title (up) Dynamic economic modelling of crop rotations with farm management practices under future pest pressure Type Journal Article
  Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 144 Issue Pages 65-76  
  Keywords Farm management; Dynamic optimization; Crop rotation; Risk aversion; Climate change; Prices; climate-change; sequester carbon; changing climate; food security; challenge; Finland; ensembles; systems; europe; tool  
  Abstract Agricultural practice is facing multiple challenges under volatile commodity markets, inevitable climate change, mounting pest pressure and various other environment-related constraints. The objective of this research is to present a dynamic optimization model of crop rotations and farm management and show its suitability for economic analysis over a 30 year time period. In this model, we include management practices such as fertilization, fungicide treatment and liming, and apply it in a region in Southwestern Finland. Results show that (i) growing pest pressure favours the cultivation of wheat-oats and wheat-oilseeds combinations, while (ii) market prices largely determine the crops in the rotation plan and the specific management practices adopted. The flexibility of our model can also be utilized in evaluating the value of other management options such as new cultivars under different projections of future climate and market conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4719  
Permanent link to this record
 

 
Author Irz, X.; Kuosmanen, N. url  doi
openurl 
  Title (up) Explaining growth in demand for dairy products in Finland: an econometric analysis Type Journal Article
  Year 2013 Publication Food Economics Abbreviated Journal Food Economics  
  Volume 9 Issue sup5 Pages 47-56  
  Keywords Consumption; food; almost ideal demand system; decomposition; elasticities; milk; demand analysis; farm  
  Abstract The dairy sector represents the cornerstone of Finnish agriculture but faces new challenges linked to the decoupling of farm subsidies and abolition of milk production quotas. Because of its increasing exposure to market forces, the sector must anticipate future changes in demand and deliver precisely what Finnish consumers want. This paper contributes to that goal by analyzing retroactively the drivers of demand for dairy products over the period 1975–2010 using National Accounts Data. After presenting the evolution of consumption for dairy products, we estimate a complete system of demand for food and dairy products and use it to decompose demand growth into a substitution effect, income effect, and trend effect. The analysis points to the severity of the challenges that the sector is facing. Stagnant consumption is at least partially the result of continuous but adverse taste changes, and as Finnish consumers grow more prosperous, they allocate an increasingly smaller share of their food budget to the dairy group. The low own-price elasticity of demand for dairy products also limits the benefits to the sector of growth in milk production. Hence, business-as-usual will result in the dwindling importance of the dairy sector in the Finnish food chain. Innovation and product differentiation, perhaps emphasizing the attributes of livestock production processes, are clearly required to counter this evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2164-828x ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4491  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: