toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Porter, J.R.; Christensen, S. url  doi
openurl 
  Title Deconstructing crop processes and models via identities Type Journal Article
  Year (up) 2013 Publication Plant Cell and Environment Abbreviated Journal Plant Cell and Environment  
  Volume 36 Issue 11 Pages 1919-1925  
  Keywords Biomass; Carbon Dioxide/pharmacology; Climate Change; Crops, Agricultural/drug effects/*physiology; *Models, Biological; Kaya-Porter identity; crop models; deconstruction; resource use efficiency  
  Abstract This paper is part review and part opinion piece; it has three parts of increasing novelty and speculation in approach. The first presents an overview of how some of the major crop simulation models approach the issue of simulating the responses of crops to changing climatic and weather variables, mainly atmospheric CO2 concentration and increased and/or varying temperatures. It illustrates an important principle in models of a single cause having alternative effects and vice versa. The second part suggests some features, mostly missing in current crop models, that need to be included in the future, focussing on extreme events such as high temperature or extreme drought. The final opinion part is speculative but novel. It describes an approach to deconstruct resource use efficiencies into their constituent identities or elements based on the Kaya-Porter identity, each of which can be examined for responses to climate and climatic change. We give no promise that the final part is correct’, but we hope it can be a stimulation to thought, hypothesis and experiment, and perhaps a new modelling approach.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-7791 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4799  
Permanent link to this record
 

 
Author Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; Eisner, S.; Fekete, B.M.; Folberth, C.; Foster, I.; Gosling, S.N.; Haddeland, I.; Khabarov, N.; Ludwig, F.; Masaki, Y.; Olin, S.; Rosenzweig, C.; Ruane, A.C.; Satoh, Y.; Schmid, E.; Stacke, T.; Tang, Q.; Wisser, D. url  doi
openurl 
  Title Constraints and potentials of future irrigation water availability on agricultural production under climate change Type Journal Article
  Year (up) 2013 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.  
  Volume 111 Issue 9 Pages 3239-3244  
  Keywords Agricultural Irrigation/economics/*methods; Agriculture/economics/*methods; Carbon Dioxide/analysis; *Climate Change; Computer Simulation; Forecasting; *Models, Theoretical; Water Supply/*statistics & numerical data; adaptation; agriculture; hydrology; uncertainty  
  Abstract We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 1091-6490 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4790  
Permanent link to this record
 

 
Author Challinor, A.J.; Smith, M.S.; Thornton, P. url  doi
openurl 
  Title Use of agro-climate ensembles for quantifying uncertainty and informing adaptation Type Journal Article
  Year (up) 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 170 Issue Pages 2-7  
  Keywords Climate models; Crop models; Ensembles; Climate change; Adaptation; Food security; Climate variability; Uncertainty; Crop yield  
  Abstract ► Introduces the special issue on Agricultural prediction using climate model ensembles. ► Discuss remaining scientific challenges. ► Develops distinction between projection- and utility-based ensemble modelling. ► Recommendations made RE modelling and the analysis and reporting of uncertainty. Significant progress has been made in the use of ensemble agricultural and climate modelling, and observed data, to project future productivity and to develop adaptation options. An increasing number of agricultural models are designed specifically for use with climate ensembles, and improved methods to quantify uncertainty in both climate and agriculture have been developed. Whilst crop–climate relationships are still the most common agricultural study of this sort, on-farm management, hydrology, pests, diseases and livestock are now also examined. This paper introduces all of these areas of progress, with more detail being found in the subsequent papers in the special issue. Remaining scientific challenges are discussed, and a distinction is developed between projection- and utility-based approaches to agro-climate ensemble modelling. Recommendations are made regarding the manner in which uncertainty is analysed and reported, and the way in which models and data are used to make inferences regarding the future. A key underlying principle is the use of models as tools from which information is extracted, rather than as competing attempts to represent reality.  
  Address 2015-09-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4690  
Permanent link to this record
 

 
Author Shrestha, S.; Ciaian, P.; Himics, M.; van Doorslaer, B. openurl 
  Title Impacts of climate change on EU agriculture Type Journal Article
  Year (up) 2013 Publication Review of Agricultural and Applied Economics Abbreviated Journal Review of Agricultural and Applied Economics  
  Volume 16 Issue 2 Pages 24-39  
  Keywords climate change; agricultural productivity; adaptation; Europe  
  Abstract The current paper investigates the medium term economic impact of climate changes on the EU agriculture. The yield change data under climate change scenarios are taken from the BIOMA (Biophysical Models Application) simulation environment. We employ CAPRI modelling framework to identify the EU aggregate economic effects as well as regional impacts. We take into account supply and market price adjustments of the EU agricultural sector as well as technical adaptation of crops to climate change. Overall results indicate an increase in yields and production level in the EU agricultural sector due to the climate change. In general, there are relatively small effects at the EU aggregate. For example, the value of land use and welfare change by approximately between -2% and 0.2%. However, there is a stronger impact at regional level with some stronger effects prevailing particularly in the Central and Northern EU and smaller impacts are observed in Southern Europe. Regional impacts of climate change vary by a factor higher up to 10 relative to the aggregate EU impacts. The price adjustments reduce the response of agricultural sector to climate change in particular with respect to production and income changes. The technical adaption of crops to climate change may result in a change production and land use by a factor between 1.4 and 6 relative to no-adaptation situation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4615  
Permanent link to this record
 

 
Author Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H. url  doi
openurl 
  Title The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
  Year (up) 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change  
  Volume 18 Issue 3 Pages 337-359  
  Keywords Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge  
  Abstract We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1381-2386 1573-1596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4613  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: