toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Journal Article
  Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 15 Issue 3 Pages 255-272  
  Keywords stics model; yield prediction; real-time; proxy-sensing; stochastic weather generator; crop yield; mediterranean environment; simulation-model; variability; nitrogen; ensembles; forecasts; demeter; europe  
  Abstract The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 1573-1618 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4621  
Permanent link to this record
 

 
Author Coucheney, E.; Buis, S.; Launay, M.; Constantin, J.; Mary, B.; García de Cortázar-Atauri, I.; Ripoche, D.; Beaudoin, N.; Ruget, F.; &rianarisoa, K.S.; Le Bas, C.; Justes, E.; Léonard, J. url  doi
openurl 
  Title Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 64 Issue Pages 177-190  
  Keywords soil-crop model; stics; model performances; plant biomass; soil nitrogen; soil water; remote-sensing data; goodness-of-fit; hydrological model; simulation-models; solar-radiation; regional-scale; climate-change; generic model; data set; validation  
  Abstract Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4554  
Permanent link to this record
 

 
Author Piontek, F.; Müller, C.; Pugh, T.A.; Clark, D.B.; Deryng, D.; Elliott, J.; Colón González, F.J.; Flörke, M.; Folberth, C.; Franssen, W.; Frieler, K.; Friend, A.D.; Gosling, S.N.; Hemming, D.; Khabarov, N.; Kim, H.; Lomas, M.R.; Masaki, Y.; Mengel, M.; Morse, A.; Neumann, K.; Nishina, K.; Ostberg, S.; Pavlick, R.; Ruane, A.C.; Schewe, J.; Schmid, E.; Stacke, T.; Tang, Q.; Tessler, Z.D.; Tompkins, A.M.; Warszawski, L.; Wisser, D.; Schellnhuber, H.J. doi  openurl
  Title Multisectoral climate impact hotspots in a warming world Type Journal Article
  Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.  
  Volume 111 Issue 9 Pages 3233-3238  
  Keywords Agriculture/statistics & numerical data; Computer Simulation; Conservation of Natural Resources/*methods; Ecosystem; *Environment; Geography; Global Warming/economics/*statistics & numerical data; Humans; Malaria/epidemiology; *Models, Theoretical; *Public Policy; Temperature; Water Supply/statistics & numerical data; Isi-mip; coinciding pressures; differential climate impacts  
  Abstract The impacts of global climate change on different aspects of humanity’s diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4538  
Permanent link to this record
 

 
Author Dumont, B.; Leemans, V.; Mansouri, M.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Parameter identification of the STICS crop model, using an accelerated formal MCMC approach Type Journal Article
  Year 2014 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 52 Issue Pages 121-135  
  Keywords crop model; parameter estimation; bayes; stics; dream; global sensitivity-analysis; simulation-model; nitrogen balances; bayesian-approach; generic model; wheat; prediction; water; optimization; algorithm  
  Abstract This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modelling. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4520  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Kersebaum, K.-C.; Chen, H.; Baby, S.; Öztürk, I.; Chen, F. url  doi
openurl 
  Title Adapting maize production to drought in the Northeast Farming Region of China Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 47-58  
  Keywords Drought; Maize production; Adaptation strategies; Household characteristics; Policy support; The Northeast Farming Region of China; climate change; Jilin province; water-stress; sowing date; yield; risk; tolerance; impacts; corn; agriculture  
  Abstract Maize (Zea mays L.) is the most prominent crop in the Northeast Farming Region of China (NFR), and drought has been the largest limitation for maize production in this area during recent decades. The question of how to adapt maize production to drought has received great attention from policy makers, researchers and farmers. In order to evaluate the effects of adaptation strategies against drought and examine the influences of policy supports and farmer households’ characteristics on adopting decisions, a large scale household survey was conducted in five representative maize production counties across NFR. Our survey results indicated that using variety diversification, drought resistant varieties and dibbling irrigation are the three major adaptation strategies against drought in spring, and farmers also adopted changes in sowing time, conservation tillage and mulching to cope with drought in spring. About 20% and 18% of households enhanced irrigation against drought in summer and autumn, respectively. Deep loosening tillage and organic fertilizer are also options for farmers to resist drought in summer. Maize yield was highly dependent on soil qualities, with yields on land of high soil quality approximately 1050 kg/ha and 2400 kg/ha higher than for normal and poor soil conditions, respectively. Using variety diversification and drought resistant varieties can respectively increase maize yield by approximately 150 and 220 kg/ha under drought. Conservation tillage increased maize yield by 438–459 kg/ha in drought years. Irrigation improved maize yield by 419–435 kg/ha and 444–463 kg/ha against drought in summer and autumn, respectively. Offering information service, financial and technical support can greatly increase the use of adaptation strategies for farmers to cope with drought. However, only 46% of households received information service, 43% of households received financial support, and 26% of households received technical support against drought from the local government. The maize acreage and the irrigation access are the major factors that influenced farmers’ decisions to apply adaptation strategies to cope with drought in each season, but only 25% of households have access to irrigation. This indicates the need for enhanced public support for farmers to better cope with drought in maize production, particularly through improving access to irrigation.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4825  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: