toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. url  doi
openurl 
  Title Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 62 Issue Pages 55-64  
  Keywords nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil  
  Abstract The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4562  
Permanent link to this record
 

 
Author Frederiks, T.M.; Christopher, J.T.; Sutherland, M.W.; Borrell, A.K. doi  openurl
  Title Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3487-3498  
  Keywords Adaptation, Physiological; Environment; *Freezing; Hordeum/*physiology; Stress, Physiological; Triticum/*physiology; Barley; frost; reproductive frost; spring radiant frost; wheat  
  Abstract Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4558  
Permanent link to this record
 

 
Author Dáder, B.; Plaza, M.; Fereres, A.; Moreno, A. url  doi
openurl 
  Title Flight behaviour of vegetable pests and their natural enemies under different ultraviolet-blocking enclosures Type Journal Article
  Year 2015 Publication Annals of Applied Biology Abbreviated Journal Ann. Appl. Biol.  
  Volume 167 Issue 1 Pages 116-126  
  Keywords agricultural pests; insect orientation; natural enemies; photoselective enclosures; uv light; aphidius-colemani; plastic films; myzus-persicae; insect pests; frankliniella-occidentalis; trialeurodes-vaporariorum; spectral efficiency; encarsia-formosa; protect crops; greenhouse  
  Abstract Ultraviolet (UV) radiation, particularly in the UV-A + B range (280-400 nm) is a fraction of the solar spectrum that regulates almost every aspect of insect behaviour, including orientation towards hosts, alighting, arrestment and feeding behaviour. To study the role of UV radiation on the flight activity of five insect species of agricultural importance (pests Myzus persicae, Bemisia tabaci and Tuta absoluta, and natural enemies Aphidius colemani and Sphaerophoria rueppellii), one-chamber tunnels were covered with six cladding materials with different light transmittance properties ranging from 2% to 83% UV and 54% to 85% photosynthetically active radiation (PAR). Inside each tunnel, insects were released from tubes placed in a platform suspended from the ceiling. Specific targets varying with insect species were placed at different distances from the platform. Evaluation parameters were designed for each insect and tested separately. The ability of insects to leave the platform was assessed, as well as the number of captures, eggs or mummies in each target, either sticky traps or plants. Our results suggest differences in flight activity among insect species and UV-blocking nets. The UV-opaque film drastically prevented aphids, and whiteflies from flying outside the tubes whereas T. absoluta, syrphids and parasitoids were not affected. Aphid flight behaviour was affected by the UV-opaque film compared to the other nets, especially in the furthest target of the tunnel. Fewer aphids reached distant traps under UV-absorbing nets, and significantly more aphids could fly to the end of tunnels covered with non-UV-blocking materials. Orientation of B. tabaci and T. absoluta was also negatively affected by the UV-opaque film although in a different trend. Unlike aphids, differences in B. tabaci captures were mainly found in the closest targets. UV transmittance did not have any effects on parasitoids, and S. rueppellii, implying cues other than visual for these insects under our experimental conditions. Further effects of photoselective enclosures on greenhouse pests and their natural enemies are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-4746 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4555  
Permanent link to this record
 

 
Author Dockter, C.; Hansson, M. doi  openurl
  Title Improving barley culm robustness for secured crop yield in a changing climate Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3499-3509  
  Keywords Climate Change; Crops, Agricultural/*anatomy & histology/genetics/*growth & development; Edible Grain/anatomy & histology/genetics/growth & development; Genes, Plant; Hordeum/*anatomy & histology/genetics/*growth & development; Phenotype; Barley (Hordeum vulgare); Green Revolution; brassinosteroid; gibberellin; lodging; plant architecture; short culm  
  Abstract The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4556  
Permanent link to this record
 

 
Author Ponti, L.; Gutierrez, A.P.; Ruti, P.M.; Dell’Aquila, A. doi  openurl
  Title Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers Type Journal Article
  Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.  
  Volume 111 Issue 15 Pages 5598-5603  
  Keywords Animals; *Biodiversity; *Climate Change; Conservation of Natural Resources/*trends; Crops, Agricultural/*economics/physiology; Geography; Host-Parasite Interactions; Mediterranean Region; Models, Biological; Models, Economic; Olea/*parasitology/*physiology; Tephritidae/*physiology; Olea europaea; desertification; ecological impacts; economic impacts; species interactions  
  Abstract The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 1091-6490 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4539  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: