toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E. url  openurl
  Title Description of the compiled experimental data available in the MACSUR CropM database Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C2.1  
  Keywords  
  Abstract (up) The input data necessary for crop model simulations and data for their calibration/validation (and thus requirements for observations and measurements in suitable experiments) have been collected through out the project together with data for additional analysis of abiotic factors influencing yields. A list of possible dataset was collated in the first year of project however very few of the existing datasets were found usable for the crop model simulation as they fell short of the requirements defined in the part 2.3. However database has been populated as planned with the results of the ongoing MACSUR studies and will serve in the same way for the MACSUR 2 duration. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2090  
Permanent link to this record
 

 
Author Olesen, J.E.; Børgesen, C.D.; Elsgaard, L.; Palosuo, T.; Rötter, R.P.; Skjelvåg, A.O.; Peltonen-Sainio, P.; Börjesson, T.; Trnka, M.; Ewert, F.; Siebert, S.; Brisson, N.; Eitzinger, J.; van Asselt, E.D.; Oberforster, M.; van der Fels-Klerx, H.J. doi  openurl
  Title Changes in time of sowing, flowering and maturity of cereals in Europe under climate change Type Journal Article
  Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A  
  Volume 29 Issue 10 Pages 1527-1542  
  Keywords Agriculture/*methods/trends; Avena/growth & development; *Climate Change; Crops, Agricultural/*growth & development; Edible Grain/*growth & development; Europe; Flowering Tops/growth & development; Forecasting/methods; Germination; Humans; Models, Biological; Models, Statistical; Seasons; Seeds/growth & development; Spatio-Temporal Analysis; Triticum/growth & development; Zea mays/growth & development  
  Abstract (up) The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal crop development, but exact changes will also depend on changes in varieties as affected by plant breeding and variety choices. This study aimed to assess changes in timing of major phenological stages of cereal crops in Northern and Central Europe under climate change. Records on dates of sowing, flowering, and maturity of wheat, oats and maize were collected from field experiments conducted during the period 1985-2009. Data for spring wheat and spring oats covered latitudes from 46 to 64°N, winter wheat from 46 to 61°N, and maize from 47 to 58°N. The number of observations (site-year-variety combinations) varied with phenological phase, but exceeded 2190, 227, 2076 and 1506 for winter wheat, spring wheat, spring oats and maize, respectively. The data were used to fit simple crop development models, assuming that the duration of the period until flowering depends on temperature and day length for wheat and oats, and on temperature for maize, and that the duration of the period from flowering to maturity in all species depends on temperature only. Species-specific base temperatures were used. Sowing date of spring cereals was estimated using a threshold temperature for the mean air temperature during 10 days prior to sowing. The mean estimated temperature thresholds for sowing were 6.1, 7.1 and 10.1°C for oats, wheat and maize, respectively. For spring oats and wheat the temperature threshold increased with latitude. The effective temperature sums required for both flowering and maturity increased with increasing mean annual temperature of the location, indicating that varieties are well adapted to given conditions. The responses of wheat and oats were largest for the period from flowering to maturity. Changes in timing of cereal phenology by 2040 were assessed for two climate model projections according to the observed dependencies on temperature and day length. The results showed advancements of sowing date of spring cereals by 1-3 weeks depending on climate model and region within Europe. The changes were largest in Northern Europe. Timing of flowering and maturity were projected to advance by 1-3 weeks. The changes were largest for grain maize and smallest for winter wheat, and they were generally largest in the western and northern part of the domain. There were considerable differences in predicted timing of sowing, flowering and maturity between the two climate model projections applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-0049 1944-0057 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4590  
Permanent link to this record
 

 
Author Sharif, B.; Mankowski, D.; Kersebaum, K.C.; Trnka, M.; Schelde, K.; Olsesen, J.E. url  openurl
  Title Empirical analysis on crop-weather relationships Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C2.5  
  Keywords  
  Abstract (up) There have been several studies, where process-based crop models are developed, used and compared in order to project crop production and corresponding model uncertainties under climate change. Despite many advances in this field, there are some correlations between climate variables and crop growth, such as pest and diseases, that is often absent in process-based models. Such relationships can be simulated using empirical models. In this study, several statistical techniques were applied on winter oilseed rape data collected in some European countries. The empirical models were then used to predict yield of winter oilseed rape in the field experiments during more than 20 years, up to 2013. Results suggest that newly developed regression techniques such as shrinkage methods work well both in yield projections and finding the influential climatic variables. Many of regression techniques agree in terms of yield prediction; however, choice of significant climate variables is rather sensitive to the choice of regression technique. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2092  
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.; Trnka, M.; Fronzek, S.; Carter, T.R.; Kahiluoto, H. doi  openurl
  Title Modelling shifts in agroclimate and crop cultivar response under climate change Type Journal Article
  Year 2013 Publication Ecology and Evolution Abbreviated Journal Ecol. Evol.  
  Volume 3 Issue 12 Pages 4197-4214  
  Keywords Adaptation; agroclimatic indicator; barley; crop simulation model; cultivar response diversity  
  Abstract (up) THIS PAPER AIMS: (i) to identify at national scale areas where crop yield formation is currently most prone to climate-induced stresses, (ii) to evaluate how the severity of these stresses is likely to develop in time and space, and (iii) to appraise and quantify the performance of two strategies for adapting crop cultivation to a wide range of (uncertain) climate change projections. To this end we made use of extensive climate, crop, and soil data, and of two modelling tools: N-AgriCLIM and the WOFOST crop simulation model. N-AgriCLIM was developed for the automatic generation of indicators describing basic agroclimatic conditions and was applied over the whole of Finland. WOFOST was used to simulate detailed crop responses at four representative locations. N-AgriCLIM calculations have been performed nationally for 3829 grid boxes at a 10 × 10 km resolution and for 32 climate scenarios. Ranges of projected shifts in indicator values for heat, drought and other crop-relevant stresses across the scenarios vary widely – so do the spatial patterns of change. Overall, under reference climate the most risk-prone areas for spring cereals are found in south-west Finland, shifting to south-east Finland towards the end of this century. Conditions for grass are likely to improve. WOFOST simulation results suggest that CO2 fertilization and adjusted sowing combined can lead to small yield increases of current barley cultivars under most climate scenarios on favourable soils, but not under extreme climate scenarios and poor soils. This information can be valuable for appraising alternative adaptation strategies. It facilitates the identification of regions in which climatic changes might be rapid or otherwise notable for crop production, requiring a more detailed evaluation of adaptation measures. The results also suggest that utilizing the diversity of cultivar responses seems beneficial given the high uncertainty in climate change projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4576  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J.G.; Jurecka, F.; Kersebaum, H.-C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter, R.P. url  openurl
  Title Applying adaptation response surfaces for managing wheat under perturbed climate and elevated CO2 in a Mediterranean environment Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume Issue Pages C4.4-D  
  Keywords  
  Abstract (up) This study developed Adaptation Response Surfaces and applied them to a study case in North East Spain on winter crops adaptation, using rainfed winter wheat as reference crop.  Crop responses to perturbed temperature, precipitation and CO2 were simulated by an ensemble of crop models. A set of combined changes on cultivars (on vernalisation requirements and phenology) and management (on sowing date and irrigation) were considered as adaptation options and simulated by the crop model ensemble. The discussion focused on two main issues: 1) the recommended adaptation options for different soil types and perturbation levels, and 2) the need of applying our current knowledge (AOCK) when building a crop model ensemble. The study has been published Agricultural Systems (Available online 25 January 2017, https://doi.org/10.1016/j.agsy.2017.01.009 ), and the  text below consists on extracts from that paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4955  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: