toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Luo, K.; Tao, F.; Moiwo, J.P.; Xiao, D. doi  openurl
  Title Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades Type Journal Article
  Year 2016 Publication (down) Scientific Reports Abbreviated Journal Scientific Reports  
  Volume 6 Issue Pages 33704  
  Keywords water-resources; groundwater recharge; stream-flow; surface-energy; china; runoff; impact; evapotranspiration; cover; availability; Science & Technology – Other Topics  
  Abstract The contributions of climate and land use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest China were quantified using detailed climatic, land use and hydrological data, along with the process-based SWAT (Soil and Water Assessment Tool) hydrological model. The results showed that for the 1980s, the changes in the basin hydrological change were due more to LUCC (74.5%) than to climate change (21.3%). While LUCC accounted for 60.7% of the changes in the basin hydrological change in the 1990s, climate change explained 57.3% of that change. For the 2000s, climate change contributed 57.7% to hydrological change in the HRB and LUCC contributed to the remaining 42.0%. Spatially, climate had the largest effect on the hydrology in the upstream region of HRB, contributing 55.8%, 61.0% and 92.7% in the 1980s, 1990s and 2000s, respectively. LUCC had the largest effect on the hydrology in the middle-stream region of HRB, contributing 92.3%, 79.4% and 92.8% in the 1980s, 1990s and 2000s, respectively. Interestingly, the contribution of LUCC to hydrological change in the upstream, middle-stream and downstream regions and the entire HRB declined continually over the past 30 years. This was the complete reverse (a sharp increase) of the contribution of climate change to hydrological change in HRB.  
  Address 2016-10-18  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4668  
Permanent link to this record
 

 
Author Zhai, R.; Tao, F. doi  openurl
  Title Contributions of climate change and human activities to runoff change in seven typical catchments across China Type Journal Article
  Year 2017 Publication (down) Science of the Total Environment Abbreviated Journal Sci. Tot. Environ.  
  Volume 605 Issue Pages 219-229  
  Keywords Catchments; Detection; Attribution; Runoff; VIC; Water resource; Weihe River-Basin; Hydrologic Response; Temporal-Changes; Loess Plateau; United-States; Yellow-River; Streamflow; Impacts; Variability; Model  
  Abstract Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%,-66%,-50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%,- 68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%,-67%,-94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed. (C) 2017 Elsevier B.V. All rights reserved.  
  Address 2017-09-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5177  
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P. url  doi
openurl 
  Title Variability in crop yields associated with climate anomalies in China over the past three decades Type Journal Article
  Year 2016 Publication (down) Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 16 Issue 6 Pages 1715-1723  
  Keywords Adaptation; Climate change; Climate extremes; Drought; Impacts and vulnerability  
  Abstract We used simple and explicit methods, as well as improved datasets for climate, crop phenology and yields, to address the association between variability in crop yields and climate anomalies in China from 1980 to 2008. We identified the most favourable and unfavourable climate conditions and the optimum temperatures for crop productivity in different regions of China. We found that the simultaneous occurrence of high temperatures, low precipitation and high solar radiation was unfavourable for wheat, maize and soybean productivity in large portions of northern, northwestern and northeastern China; this was because of droughts induced by warming or an increase in solar radiation. These climate anomalies could cause yield losses of up to 50 % for wheat, maize and soybeans in the arid and semi-arid regions of China. High precipitation and low solar radiation were unfavourable for crop productivity throughout southeastern China and could cause yield losses of approximately 20 % for rice and 50 % for wheat and maize. High temperatures were unfavourable for rice productivity in southwestern China because they induced heat stress, which could cause rice yield losses of approximately 20 %. In contrast, high temperatures and low precipitation were favourable for rice productivity in northeastern and eastern China. We found that the optimum temperatures for high yields were crop specific and had an explicit spatial pattern. These findings improve our understanding of the impacts of extreme climate events on agricultural production in different regions of China.  
  Address 2016-06-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4757  
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Asseng, S.; Bindi, M.; Biernath, C.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Heinlein, F.; Kassie, B.T.; Kersebaum, K.-C.; Klein, C.; Kuhnert, M.; Lewan, E.; Moriondo, M.; Nendel, C.; Priesack, E.; Raynal, H.; Roggero, P.P.; Rötter, R.P.; Siebert, S.; Specka, X.; Tao, F.; Teixeira, E.; Trombi, G.; Wallach, D.; Weihermüller, L.; Yeluripati, J.; Ewert, F. url  doi
openurl 
  Title Impact of spatial soil and climate input data aggregation on regional yield simulations Type Journal Article
  Year 2016 Publication (down) PLoS One Abbreviated Journal PLoS One  
  Volume 11 Issue 4 Pages e0151782  
  Keywords systems simulation; nitrogen dynamics; winter-wheat; crop models; data resolution; scale; water; variability; calibration; weather  
  Abstract We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4725  
Permanent link to this record
 

 
Author Wang, E.; Martre, P.; Zhao, Z.; Ewert, F.; Maiorano, A.; Rötter, R.P.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Cammarano, D.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Liu, L.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ripoche, D.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.; Waha, K.; Wallach, D.; Wang, Z.; Wolf, J.; Zhu, Y.; Asseng, S. url  doi
openurl 
  Title The uncertainty of crop yield projections is reduced by improved temperature response functions Type Journal Article
  Year 2017 Publication (down) Nature Plants Abbreviated Journal Nature Plants  
  Volume 3 Issue Pages 17102  
  Keywords  
  Abstract Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections. Erratum: doi: 10.1038/nplants.2017.125  
  Address 2017-08-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5173  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: