toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author von Lampe, M.; Willenbockel, D.; Ahammad, H.; Blanc, E.; Cai, Y.; Calvin, K.; Fujimori, S.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; Mason, d’C., Daniel; Nelson, G.C.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Valin, H.; van der Mensbrugghe, D.; van Meijl, H. doi  openurl
  Title Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison Type Journal Article
  Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.  
  Volume 45 Issue 1 Pages 3-3  
  Keywords Computable general equilibrium; Partial equilibrium; Meta-analysis; Socioeconomic pathway; Climate change; Bioenergy; Land use; Model; intercomparison; land-use change; food demand; crop productivity; climate-change; future  
  Abstract Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. To advance our understanding of the sources of the differences, 10 global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socioeconomic, climate change, and bioenergy scenarios using a common set of key drivers. Several key conclusions emerge from this exercise: First, for a comparison of scenario results to be meaningful, a careful analysis of the interpretation of the relevant model variables is essential. For instance, the use of real world commodity prices differs widely across models, and comparing the prices without accounting for their different meanings can lead to misleading results. Second, results suggest that, once some key assumptions are harmonized, the variability in general trends across models declines but remains important. For example, given the common assumptions of the reference scenario, models show average annual rates of changes of real global producer prices for agricultural products on average ranging between -0.4% and +0.7% between the 2005 base year and 2050. This compares to an average decline of real agricultural prices of 4% p.a. between the 1960s and the 2000s. Several other common trends are shown, for example, relating to key global growth areas for agricultural production and consumption. Third, differences in basic model parameters such as income and price elasticities, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. Fourth, the analysis shows that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5150 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4822  
Permanent link to this record
 

 
Author Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Elliott, J.; Fujimori, S.; Hasegawa, T.; Heyhoe, E.; Kyle, P.; Von Lampe, M.; Lotze-Campen, H.; Mason d’Croz, D.; van Meijl, H.; van der Mensbrugghe, D.; Müller, C.; Popp, A.; Robertson, R.; Robinson, S.; Schmid, E.; Schmitz, C.; Tabeau, A.; Willenbockel, D. doi  openurl
  Title Climate change effects on agriculture: economic responses to biophysical shocks Type Journal Article
  Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.  
  Volume 111 Issue 9 Pages 3274-3279  
  Keywords Agriculture/*economics; Carbon Dioxide/analysis; *Climate Change; Commerce/statistics & numerical data; Computer Simulation; Crops, Agricultural/*growth & development; Forecasting; Humans; *Models, Economic; agricultural productivity; climate change adaptation; integrated assessment; model intercomparison  
  Abstract Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 1091-6490 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4535  
Permanent link to this record
 

 
Author Biewald, A.; Rolinski, S.; Lotze-Campen, H.; Schmitz, C. openurl 
  Title Global valuation of agricultural, virtual blue water trade measured on a local scale Type Conference Article
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference paper presented at the 10th Annual meeting of the International Water Resource Economics Consortium, Stockholm, Sweden, 2012-08-27 to 2012-08-28  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2323  
Permanent link to this record
 

 
Author Ahammad, H.; Heyhoe, E.; Nelson, G.; Sands, R.; Fujimori, S.; Hasegawa, T.; van der Mensbrugghe, D.; Blanc, E.; Havlik, P.; Valin, H.; Kyle, P.; d’Croz, D.M.; Meijl, H.V.; Schmitz, C.; Lotze-Campen, H.; von Lampe, M.; Tabeau, A. openurl 
  Title The Role of International Trade under a Changing Climate: Insights from global economic modelling Type Book Chapter
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 293-312  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Rome Editor Elbehri, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Climate Change and Food Systems Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5001  
Permanent link to this record
 

 
Author Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Muller, C. url  doi
openurl 
  Title Forecasting technological change in agriculture-An endogenous implementation in a global, and use model Type Journal Article
  Year 2014 Publication Technological Forecasting and Social Change Abbreviated Journal Technological Forecasting and Social Change  
  Volume 81 Issue Pages 236-249  
  Keywords Technological change; Land use; Agricultural productivity; Land use; intensity; Research and development; land-use; research expenditures; productivity growth; impact; deforestation; forest; yield; Business & Economics; Public Administration  
  Abstract Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 029 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (”Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995-2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change. (C) 2013 Elsevier Inc. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-1625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4789  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: