toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Pirttioja, N.; Fronzek, S.; Rötter, R.P.; Carter, T.R. url  openurl
  Title Probabilistic assessment of crop adaptation options under a changing climate Type Conference Article
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Second Nordic International Conference on Climate Change Adaptation, 2012-08-29 to 2012-08-30  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2724  
Permanent link to this record
 

 
Author (down) Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino-San Martin, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P. url  doi
openurl 
  Title Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 87-105  
  Keywords climate; crop model; impact response surface; IRS; sensitivity analysis; wheat; yield; climate-change impacts; uncertainty; 21st-century; projections; simulation; growth; region  
  Abstract This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4662  
Permanent link to this record
 

 
Author (down) Pirttioja, N.; Carter, T.R.; & 47 al.; Rötter, R.P. url  openurl
  Title A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C4.4.3  
  Keywords  
  Abstract Impact response surfaces (IRSs) of spring and winter wheat yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect in Europe. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of 1981–2010 baseline weather.In spite of large differences in simulated yield responses to both baseline and changed climate between models, sites, crops and years, several common messages emerged. Ensemble average yields decline with higher temperatures (3–7% per 1°C) and decreased precipitation  (3–9% per 10% decrease), but benefit from increased precipitation (0-8% per 10% increase). Yields are more sensitive to temperature than precipitation changes at the Finnish site while sensitivities are mixed at the German and Spanish sites. Precipitation effects diminish under higher temperature changes. Inter-model variability is highest for baseline climate at the Spanish site, but relatively insensitive to changed climate. Modelled responses diverge most at the Finnish and German sites for winter wheat under temperature change. The IRS pattern of yield reliability tracks average yield levels. Inter-annual yield variability is more sensitive to precipitation than temperature, except at the Spanish site for spring wheat.Optimal temperatures for present-day cultivars are close to the baseline under Finnish conditions but below the baseline at the German and Spanish sites. This suggests that adoption of later maturing cultivars with higher temperature requirements might already be advantageous, and increasingly so under future warming. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2104  
Permanent link to this record
 

 
Author (down) Olesen, J.E.; Børgesen, C.D.; Elsgaard, L.; Palosuo, T.; Rötter, R.P.; Skjelvåg, A.O.; Peltonen-Sainio, P.; Börjesson, T.; Trnka, M.; Ewert, F.; Siebert, S.; Brisson, N.; Eitzinger, J.; van Asselt, E.D.; Oberforster, M.; van der Fels-Klerx, H.J. doi  openurl
  Title Changes in time of sowing, flowering and maturity of cereals in Europe under climate change Type Journal Article
  Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A  
  Volume 29 Issue 10 Pages 1527-1542  
  Keywords Agriculture/*methods/trends; Avena/growth & development; *Climate Change; Crops, Agricultural/*growth & development; Edible Grain/*growth & development; Europe; Flowering Tops/growth & development; Forecasting/methods; Germination; Humans; Models, Biological; Models, Statistical; Seasons; Seeds/growth & development; Spatio-Temporal Analysis; Triticum/growth & development; Zea mays/growth & development  
  Abstract The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal crop development, but exact changes will also depend on changes in varieties as affected by plant breeding and variety choices. This study aimed to assess changes in timing of major phenological stages of cereal crops in Northern and Central Europe under climate change. Records on dates of sowing, flowering, and maturity of wheat, oats and maize were collected from field experiments conducted during the period 1985-2009. Data for spring wheat and spring oats covered latitudes from 46 to 64°N, winter wheat from 46 to 61°N, and maize from 47 to 58°N. The number of observations (site-year-variety combinations) varied with phenological phase, but exceeded 2190, 227, 2076 and 1506 for winter wheat, spring wheat, spring oats and maize, respectively. The data were used to fit simple crop development models, assuming that the duration of the period until flowering depends on temperature and day length for wheat and oats, and on temperature for maize, and that the duration of the period from flowering to maturity in all species depends on temperature only. Species-specific base temperatures were used. Sowing date of spring cereals was estimated using a threshold temperature for the mean air temperature during 10 days prior to sowing. The mean estimated temperature thresholds for sowing were 6.1, 7.1 and 10.1°C for oats, wheat and maize, respectively. For spring oats and wheat the temperature threshold increased with latitude. The effective temperature sums required for both flowering and maturity increased with increasing mean annual temperature of the location, indicating that varieties are well adapted to given conditions. The responses of wheat and oats were largest for the period from flowering to maturity. Changes in timing of cereal phenology by 2040 were assessed for two climate model projections according to the observed dependencies on temperature and day length. The results showed advancements of sowing date of spring cereals by 1-3 weeks depending on climate model and region within Europe. The changes were largest in Northern Europe. Timing of flowering and maturity were projected to advance by 1-3 weeks. The changes were largest for grain maize and smallest for winter wheat, and they were generally largest in the western and northern part of the domain. There were considerable differences in predicted timing of sowing, flowering and maturity between the two climate model projections applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-0049 1944-0057 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4590  
Permanent link to this record
 

 
Author (down) Nendel, C.; Ewert, F.; Rötter, R.P.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Asseng, S.; Ruane, A.C.; Banse, M.; Tiffin, R.; Brouwer, F.; Sinabell, F.; Scollan, N.; Meijs, J.; Angulo, C.; Antle, J.M.; Baigorria, G.; Basso, B.; Bindi, M.; Boote, K.J.; Gaiser, T.; Janssen, S.; Kersebaum, K.C.; Nelson, G.; Olesen, J.E.; Palosuo, T.; Porter, C.H.; Porter, J.R.; Rivington, M.; Semenov, M.; Stewart, D.; Thorburn, P.; Trnka, M.; van Ittersum, M.K.; Verhagen, J.; Wallach, D.; Winter, J.M. url  openurl
  Title Addressing challenges and uncertainties for, the use of agro-ecosystem models to, assess climate change impact and food security across scales Type Conference Article
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Climate Change and Regional Responses Conference, Dresden, 2013-05-27 to 2013-05-27  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2679  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: