toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Houska, T.; Kraft, P.; Liebermann, R.; Klatt, S.; Kraus, D.; Haas, E.; Santabarbara, I.; Kiese, R.; Butterbach-Bahl, K.; Müller, C.; Breuer, L. url  doi
openurl 
  Title Rejecting hydro-biogeochemical model structures by multi-criteria evaluation Type Journal Article
  Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 93 Issue Pages 1-12  
  Keywords  
  Abstract Highlights • New method to investigate biogeochemical model structure performance. • Process based hydrological modelling can improve biogeochemical model predictions. • Modelling efficiency dramatically drops with multiple objectives. Abstract This work presents a novel way for assessing and comparing different hydro-biogeochemical model structures and their performances. We used the LandscapeDNDC modelling framework to set up four models of different complexity, considering two soil-biogeochemical and two hydrological modules. The performance of each model combination was assessed using long-term (8 years) data and applying different thresholds, considering multiple criteria and objective functions. Our results show that each model combination had its strength for particular criteria. However, only 0.01% of all model runs passed the complete rejectionist framework. In contrast, our comparatively applied assessments of single thresholds, as frequently used in other studies, lead to a much higher acceptance rate of 40–70%. Therefore, our study indicates that models can be right for the wrong reasons, i.e., matching GHG emissions while at the same time failing to simulate other criteria such as soil moisture or plant biomass dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium  
  Area Expedition Conference  
  Notes (up) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4983  
Permanent link to this record
 

 
Author Constantin, J.; Raynal, H.; Casellas, E.; Hoffman, H.; Bindi, M.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kersebaum, K.-C.; Klatt, S.; Kuhnert, M.; Lewan, E.; Maharjan, G.R.; Moriondo, M.; Nendel, C.; Roggero, P.P.; Specka, X.; Trombi, G.; Villa, A.; Wang, E.; Weihermueller, L.; Yeluripati, J.; Zhao, Z.; Ewert, F.; Bergez, J.-E. doi  openurl
  Title Management and spatial resolution effects on yield and water balance at regional scale in crop models Type Journal Article
  Year 2019 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 275 Issue Pages 184-195  
  Keywords Drainage; Evapotranspiration; Aggregation; Decision rules; Scaling; winter-wheat yield; data aggregation; sowing dates; area index; input; data; carbon; growth; irrigation; productivity; assimilation  
  Abstract Due to the more frequent use of crop models at regional and national scale, the effects of spatial data input resolution have gained increased attention. However, little is known about the influence of variability in crop management on model outputs. A constant and uniform crop management is often considered over the simulated area and period. This study determines the influence of crop management adapted to climatic conditions and input data resolution on regional-scale outputs of crop models. For this purpose, winter wheat and maize were simulated over 30 years with spatially and temporally uniform management or adaptive management for North Rhine-Westphalia ((similar to)34 083 km(2)), Germany. Adaptive management to local climatic conditions was used for 1) sowing date, 2) N fertilization dates, 3) N amounts, and 4) crop cycle length. Therefore, the models were applied with four different management sets for each crop. Input data for climate, soil and management were selected at five resolutions, from 1 x 1 km to 100 x 100 km grid size. Overall, 11 crop models were used to predict regional mean crop yield, actual evapotranspiration, and drainage. Adaptive management had little effect (< 10% difference) on the 30-year mean of the three output variables for most models and did not depend on soil, climate, and management resolution. Nevertheless, the effect was substantial for certain models, up to 31% on yield, 27% on evapotranspiration, and 12% on drainage compared to the uniform management reference. In general, effects were stronger on yield than on evapotranspiration and drainage, which had little sensitivity to changes in management. Scaling effects were generally lower than management effects on yield and evapotranspiration as opposed to drainage. Despite this trend, sensitivity to management and scaling varied greatly among the models. At the annual scale, effects were stronger in certain years, particularly the management effect on yield. These results imply that depending on the model, the representation of management should be carefully chosen, particularly when simulating yields and for predictions on annual scale.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: