toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Constantin, J.; Raynal, H.; Casellas, E.; Hoffman, H.; Bindi, M.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kersebaum, K.-C.; Klatt, S.; Kuhnert, M.; Lewan, E.; Maharjan, G.R.; Moriondo, M.; Nendel, C.; Roggero, P.P.; Specka, X.; Trombi, G.; Villa, A.; Wang, E.; Weihermueller, L.; Yeluripati, J.; Zhao, Z.; Ewert, F.; Bergez, J.-E. doi  openurl
  Title Management and spatial resolution effects on yield and water balance at regional scale in crop models Type Journal Article
  Year 2019 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 275 Issue Pages 184-195  
  Keywords Drainage; Evapotranspiration; Aggregation; Decision rules; Scaling; winter-wheat yield; data aggregation; sowing dates; area index; input; data; carbon; growth; irrigation; productivity; assimilation  
  Abstract Due to the more frequent use of crop models at regional and national scale, the effects of spatial data input resolution have gained increased attention. However, little is known about the influence of variability in crop management on model outputs. A constant and uniform crop management is often considered over the simulated area and period. This study determines the influence of crop management adapted to climatic conditions and input data resolution on regional-scale outputs of crop models. For this purpose, winter wheat and maize were simulated over 30 years with spatially and temporally uniform management or adaptive management for North Rhine-Westphalia ((similar to)34 083 km(2)), Germany. Adaptive management to local climatic conditions was used for 1) sowing date, 2) N fertilization dates, 3) N amounts, and 4) crop cycle length. Therefore, the models were applied with four different management sets for each crop. Input data for climate, soil and management were selected at five resolutions, from 1 x 1 km to 100 x 100 km grid size. Overall, 11 crop models were used to predict regional mean crop yield, actual evapotranspiration, and drainage. Adaptive management had little effect (< 10% difference) on the 30-year mean of the three output variables for most models and did not depend on soil, climate, and management resolution. Nevertheless, the effect was substantial for certain models, up to 31% on yield, 27% on evapotranspiration, and 12% on drainage compared to the uniform management reference. In general, effects were stronger on yield than on evapotranspiration and drainage, which had little sensitivity to changes in management. Scaling effects were generally lower than management effects on yield and evapotranspiration as opposed to drainage. Despite this trend, sensitivity to management and scaling varied greatly among the models. At the annual scale, effects were stronger in certain years, particularly the management effect on yield. These results imply that depending on the model, the representation of management should be carefully chosen, particularly when simulating yields and for predictions on annual scale.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 5225  
Permanent link to this record
 

 
Author Grosz, B.; Dechow, R.; Gebbert, S.; Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Kuhnert, M.; Yeluripati, J.; Haas, E.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Tao, F.; Roetter, R.; Kassie, B.; Cammarano, D.; Asseng, S.; Weihermueller, L.; Siebert, S.; Gaiser, T.; Ewert, F. doi  openurl
  Title The implication of input data aggregation on up-scaling soil organic carbon changes Type Journal Article
  Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 96 Issue Pages 361-377  
  Keywords Biogeochemical model; Data aggregation; Up-scaling error; Soil organic carbon; DIFFERENT SPATIAL SCALES; NITROUS-OXIDE EMISSIONS; MODELING SYSTEM; DATA; RESOLUTION; CROP MODELS; CLIMATE; LONG; PRODUCTIVITY; CROPLANDS; DAYCENT  
  Abstract In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. (C)2017 Elsevier Ltd. All rights reserved.  
  Address 2017-09-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 5176  
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Kiese, R.; Wang, E.; Ewert, F. url  openurl
  Title Weather data aggregation’s effects on simulation of cropping systems: a model, production system and crop comparison Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Interactions of climate, soil and management practices in cropping systems can be simulated at different scales to provide information for decision making. Low resolution simulation need less effort, but important details could be lost through data aggregation effects (DAEs). This paper aims to provide a general method to assess the DAEs on weather data and the simulation of cropping systems, and further investigate how the DAEs vary with changing crop models, crops, variables and production systems. A 30-year continuous cropping system was simulated for winter wheat and silage maize and potential, water-limited and water-nitrogen-limited production situations. Climate data of 1 km resolution and aggregations to resolutions of 10 to 100 km was used as input for the simulations. The data aggregation narrowed the variation of weather data and DAEs increased with increasingly coarser spatial resolution, causing the loss of hot spots in simulated results. Spatial patterns were similar across different resolutions. Consistent with DAEs on weather data, the DAEs on simulated yield (0 to 1.2 t ha-1 for winter wheat and 0 to 1.7 t ha-1 for silage maize), evapotranspiration (3 to 45 mm yr-1 for winter wheat and 4 to 40 mm yr-1 for silage maize), and water use efficiency (0.02 to 0.25 kg m-3­ for winter wheat and 0.04 to 0.4 kg m-3­ for silage maize), increased with coarser spatial resolution. Thus, if spatial information is needed for local management decisions, higher resolution is needed to adequately capture the spatial heterogeneity or hot spots in the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial (down) 5141  
Permanent link to this record
 

 
Author Klatt, S.; Haas, E.; Kiese, R. url  openurl
  Title Responses of soil N2O emissions and nitrate leaching on climate input data aggregation: a biogeochemistry model ensemble study Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Models are increasingly used to estimate greenhouse gas emissions at site to regional and national scales and are outlined as the most advanced methodology for national emission reporting in the framework of UNFCCC. Process-based models incorporate the major processes of the carbon and nitrogen cycle and are thus thought to be widely applicable at various spatial and temporal scales. The definition of the spatial scale is determined by the objectives. GHG emission reporting requests spatially and temporally aggregated information whereas for the assessment of mitigation options on hot spots and hot moments of emissions a high spatial simulation resolution is required. In addition, other input data also determine the simulation scale. Low resolution simulations needs less effort in computation and data management, but important details could be lost during the process of data aggregation associated with high uncertainties of the simulation results. This study presents the aggregation effects of climate input data on the simulations of soil N2O emissions and nitrate leaching by comparing different biogeochemistry models. Using process-based models (DailyDayCent, LandscapeDNDC, Stics, Mode, Coup, Epic), we simulated a 30-year cropping system for two crops (winter wheat and maize monocultures) under water- and nutrient-limited conditions based on a 1 km resolution climate dataset. We aggregated the climate data to resolutions of 10, 25, 50, and 100 km and repeated the simulations on these spatial scales. We calculated the N2O emissions as well as the nitrate leaching on all scales. Results will be presented and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial (down) 5123  
Permanent link to this record
 

 
Author Haas, E.; Klatt, S.; Kiese, R.; Santa Barbara Ruiz, I.; Kraus, D. url  openurl
  Title Parameter-induced uncertainty quantification of a regional N2O and NO3 inventory using the biogeochemical model LandscapeDNDC Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this study we quantify regional parameter-induced model uncertainty on nitrous oxide (N2O) emissions and nitrate (NO3) leaching from arable soils of Saxony (Germany) using the biogeochemical model LandscapeDNDC. For this we calculate a regional inventory using a joint parameter distribution for key parameters describing microbial C and N turnover processes as obtained by a Bayesian calibration study. We representatively sampled 400 different parameter vectors from the discrete joint parameter distribution comprising approximately 400,000 parameter combinations and used these to calculate 400 individual realizations of the regional inventory. The spatial domain (represented by 4042 polygons) is set up with spatially explicit soil and climate information and a region-typical 3-year crop rotation consisting of winter wheat, rape- seed, and winter barley. Average N2O emission from arable soils in the state of Saxony across all 400 realizations was 1.43 ± 1.25 [kg N / ha] with a median value of 1.05 [kg N / ha]. Using the default IPCC emission factor approach (Tier 1) for direct emissions reveal a higher average N2O emission of 1.51 [kg N / ha] due to fertilizer use. In the regional uncertainty quantification the 20% likelihood range for N2O emissions is 0.79 – 1.37 [kg N / ha] (50% likelihood: 0.46 – 2.05 [kg N / ha]; 90% likelihood: 0.11 – 4.03 [kg N / ha]). Respective quantities were calculated for nitrate leaching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial (down) 5111  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: