toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. doi  openurl
  Title A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark Type Journal Article
  Year 2014 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 187 Issue Pages 1-13  
  Keywords Winter wheat; Climate change; Adaptation; Uncertainty; Europe; food security; model hadgem1; physical-properties; regional climate; change impacts; field-scale; land-use; yield; nitrogen; variability  
  Abstract Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SIZES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha(-1)) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha(-1). Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha(-1)). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1 degrees C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments of optimal phenotypic characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4630  
Permanent link to this record
 

 
Author Challinor, A.J.; Smith, M.S.; Thornton, P. url  doi
openurl 
  Title Use of agro-climate ensembles for quantifying uncertainty and informing adaptation Type Journal Article
  Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 170 Issue Pages 2-7  
  Keywords Climate models; Crop models; Ensembles; Climate change; Adaptation; Food security; Climate variability; Uncertainty; Crop yield  
  Abstract ► Introduces the special issue on Agricultural prediction using climate model ensembles. ► Discuss remaining scientific challenges. ► Develops distinction between projection- and utility-based ensemble modelling. ► Recommendations made RE modelling and the analysis and reporting of uncertainty. Significant progress has been made in the use of ensemble agricultural and climate modelling, and observed data, to project future productivity and to develop adaptation options. An increasing number of agricultural models are designed specifically for use with climate ensembles, and improved methods to quantify uncertainty in both climate and agriculture have been developed. Whilst crop–climate relationships are still the most common agricultural study of this sort, on-farm management, hydrology, pests, diseases and livestock are now also examined. This paper introduces all of these areas of progress, with more detail being found in the subsequent papers in the special issue. Remaining scientific challenges are discussed, and a distinction is developed between projection- and utility-based approaches to agro-climate ensemble modelling. Recommendations are made regarding the manner in which uncertainty is analysed and reported, and the way in which models and data are used to make inferences regarding the future. A key underlying principle is the use of models as tools from which information is extracted, rather than as competing attempts to represent reality.  
  Address 2015-09-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4690  
Permanent link to this record
 

 
Author Angulo, C.; Rötter, R.; Lock, R.; Enders, A.; Fronzek, S.; Ewert, F. url  doi
openurl 
  Title Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe Type Journal Article
  Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 170 Issue Pages 32-46  
  Keywords regional crop modelling; calibration; impact assessment; yield variability; simulation; simulation-models; elevated CO2; integrated assessment; bayesian calibration; atmospheric CO2; growth simulation; use efficiency; spring wheat; winter-wheat; large-area  
  Abstract Process-based crop simulation models are increasingly used in regional climate change impact studies, but little is known about the implications of different calibration strategies on simulated yields. This study aims to assess the importance of region-specific calibration of five important field crops (winter wheat, winter barley, potato, sugar beet and maize) across 25 member countries of the European Union (EU25). We examine three calibration strategies and their implications on spatial and temporal yield variability in response to climate change: (i) calculation of phenology parameters only, (ii) consideration of both phenology calibration and a yield correction factor and (iii) calibration of phenology and selected growth processes. The analysis is conducted for 533 climate zones, considering 24 years of observed yield data (1983-2006). The best performing strategy is used to estimate the impacts of climate change, increasing CO2 concentration and technology development on yields for the five crops across EU25, using seven climate change scenarios for the period 2041-2064. Simulations and calibrations are performed with the crop model LINTUL2 combined with a calibration routine implemented in the modelling interface LINTUL-FAST. The results show that yield simulations improve if growth parameters are considered in the calibration for individual regions (strategy 3); e.g. RMSE values for simulated winter wheat yield are 2.36, 1.10 and 0.70 Mg ha(-1) for calibration strategies 1, 2 and 3, respectively. The calibration strategy did not only affect the model simulations under reference climate but also the extent of the simulated climate change impacts. Applying the calibrated model for impact assessment revealed that climatic change alone will reduce crop yields. Consideration of the effects of increasing CO2 concentration and technology development resulted in yield increases for all crops except maize (i.e. the negative effects of climate change were outbalanced by the positive effects of CO2 and technology change), with considerable differences between scenarios and regions. Our simulations also suggest some increase in yield variability due to climate change which, however, is less pronounced than the differences among scenarios which are particularly large when the effects of CO2 concentration and technology development are considered. Our results stress the need for region-specific calibration of crop models used for Europe-wide assessments. Limitations of the considered strategies are discussed. We recommend that future work should focus on obtaining more comprehensive, high quality data with a finer resolution allowing application of improved strategies for model calibration that better account for spatial differences and changes over time in the growth and development parameters used in crop models. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4597  
Permanent link to this record
 

 
Author Höglind, M.; Thorsen, S.M.; Semenov, M.A. url  doi
openurl 
  Title Assessing uncertainties in impact of climate change on grass production in Northern Europe using ensembles of global climate models Type Journal Article
  Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 170 Issue Pages 103-113  
  Keywords climatic variability; frost damage; grass modelling; ice damage; multi-model ensemble; elevated co2 concentration; phleum-pratense l; timothy regrowth; change scenarios; winter survival; meadow fescue; crop yields; growth; frost; temperature  
  Abstract Forage-based dairy and livestock production is the backbone of agriculture in Northern Europe in economic terms. Changes in growing conditions that affect forage grass yield may have great economic consequences. This study assessed the impact of climate change on two grass species, timothy and ryegrass, at 14 locations in Northern Europe (Iceland, Scandinavia, Baltic countries) in a near-future scenario (2040-2065) compared with the baseline period 1960-1990. Local-scale climate scenarios were based on the CMIP3 multi-model ensembles of 15 global climate models in order to quantify the uncertainty in the impacts relating to highly uncertain projections of future climate. Potential yield of timothy, the most important perennial forage grass in Northern Europe, was simulated under the assumption of optimal overwintering conditions and current CO2 level, in order to obtain an estimate of the effect of changes in summer climate per se. The risk of frost and ice damage during winter was also assessed. The simulation results demonstrated that potential grass yield will increase throughout the study area, mainly as a result of increased growing temperatures. The yield response to climate change was slightly larger in irrigated than non-irrigated conditions (14% and 11%, respectively), due to larger water deficit for the 2050 scenario. However, a geo-climatic gradient was evident, with the largest predicted yield response at western locations. A geo-climatic gradient was also revealed with respect to potential frost damage, which was predicted to increase during winter in some areas east of the Baltic Sea for timothy, and for a larger number of locations both east and west of the Baltic Sea for perennial ryegrass. The risk of frost damage in spring was predicted to increase mainly in western parts of the study area. If frost damage to perennial ryegrass increases during winter, the expected increase in winter temperature due to global warming may not necessarily improve overwintering conditions, so the growing zone may not necessarily expand to the north and east of the study area by 2050. The uncertainty in impacts was frequently, but not consistently, greater in western than eastern locations. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4492  
Permanent link to this record
 

 
Author Graux, A.-I.; Bellocchi, G.; Lardy, R.; Soussana, J.-F. url  doi
openurl 
  Title Ensemble modelling of climate change risks and opportunities for managed grasslands in France Type Journal Article
  Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 170 Issue Pages 114-131  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4926  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: